SR

a guide with exercises

including the 2.6.31 kernel

i

(¢) Copyright Jerry Cooperstein 2009. Afl rights reserved.

No part of this publication may be reproduced, photocopied, stored on a retrieval system, or trans-
mitted without express prior written consent. '

Published by:

Jerry Cooperstein
coop@coopj.com
WWW.COOpj.com

No representations or warranties are made with respect to the contents or use of this material, and any
express or implied warranties of merchantability or fitness for any particular purpose or specifically
disclaimed.

Although third-party application sollware packages may be referenced herein, this is for demonstration
purposes dnly and shall not constitute an endorsement of any of these software applications.

Linux is a registered trademark of Linus Torvalds. Other trademarks within this course material are
the property of their respective owners.

If there arc any questions about proper and fair use of the material herein, pleage contact Jerry
Cooperstein at coop@coopj.com.

‘Contents

Preface

1 Preliminaries

1.1 Procedures L e e e
1.2 Linux Distributions e
1.3 Kernel Versions o
14 Platforms L e e e
1.5 Hardware o 0 o o e e e e e e e,
1.6 Limux Driver Project e e e
1.7 Documentation and Links
2 Device Drivers
21 TypesofDevices e
2.2 Mechanism vs. Policy L e e
2.3 Avoiding Binary Blobs L e,
2.4 How Applications Use Device Drivers,
2.5 Walking Through a System Call
2.6 FError Numbers 0 e e
27 printk(} .. e
28 Labs
3 Modules I: Basics
31 WhatisaModule? e
3.2 A lvivial Example - Hello World
3.3 Module Utilities oL e e e e e
34 Passing Parameters L e e e
3.5 CompilingaModule
3.6 Modules and Hot Plug L e
37 Labs e e e e e

4 Character Devices

xvil

11
11

14
14
16
16
18
19
21

23
23
24

25
27

28
a3
34

35

v

CONTENTS

A1 Device NOdES .« . o o o o o i v e e s e b e e e e e e e e e e e e e e 36
4.2 Major and Minor Numbers 0 oo e e 36
4.3 Reserving Major/Minor Numbers« « oo o oot o e 38
44 Accessing the Device Nade oo oot v ot 40
4.5 Registering the Device . . . o v oo i it IR |
46 udevand HATL e e e e e e e e 42
47 file operations Struchure oo o e e e 44
4.8 Driver Entry Polns 0 0 oo 46
49 'The file and inode SEructures . . . -« o o v o o h e e s e e 49
4.10 Module Usage Count o .o v oo v m e 51
AA1 TaD8 o o v e e e e e e e e e e e e e 52
Kernel Configuration and Compilation 53
5.1 Installation and Layout of the Kernel Sourceo oo e e 53
5.2 Kernel BrOWSETS o v v v v v e e v e e e e e e e e e e 56
5.3 Kernel Configuration Files oo v i 56
54 Relling Your Own Kernel 0o o e 57
55 imitrd and inibramls L . i e e e e e e e e e e e e e e 60
5.6 LabS . .t e e e e e e e e e e e e e e e e 63
Kernel Features 67
6.1 Components of the Kernelo oo 67
6.2 User-Space vs. Kernel-Space -« o v oo 69
6.3 Scheduling Algorithms and Task Structureso oo v e 70
6.4 Process CONLEXL o o 0 v i i e e e e e e e e e e e e e e e e 71
B.5 LADS . o e 72
Kernel Style and General Considerations 75
71 Coding Style . . . o o . e 76
72 kernel-dOC . . L . e e e e e e e e e e e e e e 77
7.3 Using Generic Kernel Routines and Methods v oo v v oo e e (e
74 MakingaKernel Patch0 oo oo e 78
B UBPAISE . . o v e e e e e e e e e e e e e e e e e s e 79
7.6 Using likely() and unlikely(}« oo 80
79 Linked LISES . . . o o o o e e e e e e e e e e 81
7.8 Wriling Portable Code - 32/64-bit, indiannesso 85
7.9 Writing for SMI® e e 85
7.10 Writing for High Memory Systems . . . - % v« v v v o oo v e ... 8B

S

foo

CONTENTS

7.13 Labs

8 Interrupts and Exceptions
8.1 What are Interrupts and Exceptions?
8.2 Exceplions
8.3 Interrupts
8.4 MSI

8.5 Enabling/Disabling Interrupts

8.6 What You Cannot Do at Tnterrupt Time
8.7 IRQ Data Structures
8.8 Installing an Interrupt Handler
8.9 Labs

9 Modules II: Exporting, Licensing and Dynamic Loading
9.1 Exporting Symbaols
9.2 Module Licensing

9.3 Automatic Loading/Unloading of Modules
94 Builtdn Drivers
9.5 Kernel Building and Makefiles
96 Labs

11 Timing and Timers

11.1 Jiffies
11.2 T'ime Stamp Counter

113 Imserting Delays oL
11.4 What are Dynamic Timers?

11.5 Timer Functions

11.6 Timer Implementation

11.7 Iligh Resolution Timers

101

103
104
104
106

107
109

110

CONTENTS

vi

11.8 Using High Resolution Timers v v me oo e e 132
11.9 Labs . o v o o e e e e e e e e e e e e e e e e e e e 135
12 Race Conditions and Synchronization Methods 137
12.1 Concurrency and Synchronization Methodso v vv e e e 138
12.2 Atomic Operations oo e o e 139
12.3 Bit Operabions v oo v ot e e e e e 140
12.4 Spinlockso e e e e e e e e e e e e 141
125 BigKernel Lock0 o c vt 143
19.6 MULEKES - o o v e e e v e e e e e e e e e e e e e e e e 144
12.7 SemMAapROTes . . .« .« o v v e e e e e 145
12.8 Completion Fanctions0 o n o v e e e e 148
12.0 Reference COUTMEE . . . o v o o o v e oo e e e e e e e e e e 149
12 A0LADS « o v o e o e e e e e e e e e e e e e e e e e e 150
13 joctls 153
19.1 What are 10cEIsT . . . L . L o e e e e e e 153
13.2 Driver Entry point for foctls« oo e 154
133 Lockless toctls e e e 155
134 Defining 10Ctls e 156

T TN Y T 158
14 'The proc Filesystem 161
14.1 What is the proc Filesystem?« o -0 v a s e 161
14.2 Creating Botries o o o v oo oo i s 162
14.3 Reading BOGTIEs o o0 oo v ot 163
14.4 Writing Enbries Lo 164
14,5 The seq.file Interface« o v o oo 165
T4.6 LabDS -+ o o e e e e e e e e e e e e e e e e e 167

15 Unified Device Model and sysfs 171
15.1 Unified Device Model o e 171
15.2 BASIC SEIUCEUTES .« + » o v v o v v e m e e o e m e m e e e e e e 172
15.3 Real Devices . . o v o v e e e e e m e e e e e e 174
154 YIS . o o e e e e e e 175
155 LaDB .« 2 oo e 177
16 Firmware 179
16.1 What is FIFIOWAEET . © o« o o v v e e e v e vt oo e e e e s e e 179

Friamii e R

RS P A

SR

CONTENTS

17 Memory Management and AHocation
17.1 Virtual and Physical Memory

172 Memory Zones +

17.3 Page Tables

17.4 kmalloc()

17.7 Early Allocations and bootmemy()

17.8 Slabs and Cache Allocations
17.9 Labs

18 Transferring Between User and Kernel Space

18.1 Transferring Between Spaces

18.3 Direct transfer - Kernel I/O and Memory Mapping
18.4 Kernel I/O

18.8 Driver Entry Point for mmap()
18.9 Relay Chanunels
18.10Rclay API

19 Sleeping and Wait Quecues
19.1 What are Wait Queues?

vii

CONTENTS CONTENTS

viii
ix
20 Interrupt Handling and Deferrable Functions 225 23.8 DMA under ISA
20.1 Top and Bottom Halves oo 225 239 Labs . - oo\ ;:1
.............................. 2
90.2 Deferrable Functions and soffirgs . - . . o« - ¢ v o e e e e 227
24 Network Drivers I: Basics
90.3 Tasklebs v o o e e e e e e e e e e e e e e 228 94.1 Network Lave d Data B 273
. 'S an : i
204 Work QUOTES . . v v v v v v v e et m e e 231 i ata Encapsulation oo L 273
‘ 24.2 Datalink Tayer
20,5 Creating Kernel Threads« o oo oo v v e me s RN . 276
90.6 Threaded Tnt Handl 015 24.3 Network Device Dyivers 276
; eaded Interrupt Handlors . . . o - o o o oo e 244 Toading/Unlosding T
U7 LADS - -« o o v e e e e e e e e e e e e e 235 ST T e 277
245 Opening and Closing 978
21 Hardware 1/0 239 B Labs o oo 70
1 Buses And POIES « + « o o o o e e 240
21 , Muc;ef: anB 0{" & 210 25 Network Drivers 1I: Data Structures 981
. BIOTY BOFTIETS . o . o o v it i e e e e e 95.1 neb_device Structure . . . - .)
91.3 Registering T/O Ports oo v 241 25.2 net.device ops Structure o
214 Resource MANagement o o oo o s e e 242 953 sk _buff Structure . 287
21.5 Reading and Writing Data from I/O Registers oo oo e 244 954 Socket Buffer Functions . . - - oo 289
............................... 290
21.6 Slowing I/O Calls to the Hardwareo o oo o oo vmn v e e 245 265 Labs . oL 293
217 Allocating and Mapping [/O Memory« . oo v oo v m oo s 246 26 Network Drivers 11I: Transmission and Roception
. 295
91.8 Accessing I/O MemOry oo ot e e e e 247 26.1 "Iransmitbing Data and Timeouts
21.9 Access by User - ioperm(), iopl(), /dev/port 249 96.2 Rocciving Date « + o 29
................................... 207
DTA0LADE « « o v o o e e e e e e e e e e e e e e e e e 249 26.3 Statistics, .
G Taba T 297
22 PCIL N R I 208
991 What is PCI? . . L e e e e e e e e e e e s e 253 27 Network Drivers IV: Selected Topics
299 PCI Device DFIVETS . o v v v v o o v e v e e e s e 256 27.1 Multicasting 301
| - B I Mullicsting L 302
99 3 PCI Structures and Functions . .« o o v o o n oo o e 258 97.2 Changes in Link State
92.4 Accessing Configuration Spage -« oo e 259 T T e 303
273 1octls L L. g
cessi o o oo o200 L g74 NAPLand Intermuot Mitieation T 3
22.5 Accessing 1/0 and Memory Spaces 260 27.4 NAPI and Interrupt Mitigation 304
99,6 POTEXDIESS + « 2 v v v o e o v oo m oo e o m s s e e s 261 205 NAPLDetalls - - o oo
997 TabS -+« v o e e 261 27.6 TSO and TOE 90
................................ 305
_ 97.7 MIL and ethtool 505
23 Direct Memory Access (DMA) 263 0 b T T T T T T s s 306
291 What 18 DMAT o e e e e e e e e e e 264 28 USB Drivers 30
232 DMA and Inlerrupts o 0o e e 264 28.1 What is USB? 313
23.3 DMA Memory Conslrainfs« c o v oo v e 265 982 USB Topology . .« o oo oo 310
234 DMA Directly t0 USET . . . v v v v e v v e e e e 266 283 Descriptors L 211
235 DMA under PCTo oot it i oo e 266 284 USB Device Classes 312
956 DMA POOIS « o o o v o e e e e e e e e e e e e e 269 985 Data Transfer o\ 313
9260 28.6 USB under Limuxo oo 314

93.7 Scatter/Gather Mappings« o« oo o v s

CONTIEENTS

X
98.7 Registering USB Deviceso v en s 314
98.8 Example of & USB DIIVEr o v v o m oo com o m e s T
D80 LADE © + v o e e e e e e e e e e e s 319
29 Memory Technology Devices 321
90.1 What are MTD Devices? o v v v e v s vm o m e m e a2
299 NAND vs. NOR . o o o v v v e e e e e m e e 322
99.3 Driver and User Modules« o oo v v omm s 324
204 Flash Filesystems« v v o v m s 324
05 LADE - » b e v e e e e e e e e 325
Y Power Management 329
30.1 Power Manmagement o« vo o eoxoe ss s s s n s 329
302 APM and ACPL ot i e i e e 330
30.3 System Power States 331
30.4 Callback Punctions ‘332
B05 LADE © o v e e e e e e e e e 334
31 Notifiers 3356
311 What are Notilers? - v o v oo m s s s 335
31.2 Data Structures ‘336
31.3 Callbacks and Notifications o o o oo v oo m e 337
31.4 Creating Notifier Chains oo oo s 337
B15 LabS « o o e e e e e e T 338
32 CPU Frequency Scaling 339
39.1 What is Frequency and Voltage Scaling?+ v oo v v oo 339
290 NOHOETS « v v o oo e e e e m e m e e e s 340
993 DIFIVELS « o v o v e e e e e e e e e e 342
32.4 Governors ‘34.3
a0 7 R I . 344
33 Asynchronous 1/0O 345
33.1 What is Asynchronous T/O7o oo s 345
33.2 The Posix Asynchronous /O APTo oo v e v oo s 346
33.3Linuxlmplementation....................................347
B84 LADS © v v o e e e e e e e e 350
34 I/0O Scheduling 351
341 [/O Schedulingo 351

SRS

CONTENTS
Xi
342 Tunables
34.3 noop /O Scheduler 353
344 Deadline /O Seheduler « . .« - - . 353
34.5 Completely Fair Queue Scheduler 354
346 Anticipatory 1/0 Scheduler - . - - 355
7 Labs - ;11
.......................... 35
35 Block Drivers ‘
35.1 What are Block Drivers? 357
352 Buffering 357
353 Registering Block Driver . « .« . 358
g e DO 358
355 Request Hoadling . .« o . T 360
6 L 362
.......................... 365

xit

CONTENTS

List of Figures

2.1
2.2
2.3

4.1

6.1
6.2

171
7.2

24.1
24.2

25.1

28.1
28.2
28.3

From application todevice 13
USB: Controller, Core and Device 14
Using binary blobs indrivers L 15
Accessing device nodes L. L 41
Main kernel $asks oL oL 63
User and kernel space 69
User and kernel address reglons L 184
DMA, normal and high memory 185
Network layers o o 274
Data Packet Bncapsulation L, 275
Socket buffer layout L L 289
USB topology 311
USB descriptors, 311
USB: Controller, Core and Device 314

LIST OF FIGURES

s R e e e

List of Tables

4.1
4.5
4.6

5.1

2.1
8.2
8.3
8.5

9.1

11.1

13.1
13.3

17.1
17.3

18.2
18.3

19.1

21.2

22.1
22.2

printk() logging levels 20
Devicenode macros L 37
file structure elements oL L 49
inode strucbure elements L L 50
Layout of the kernel source 54
32-bit x86 exceptions L 91
MQstatus values00 o0 97
IRQhandler flags 98
IRQ handler return values 100
Licemses 105
Timer groups 131
loctl() return valueso 154
loctl() command bit fields L 157
GFP memory allocation flags 187
Memory cache flags. i91
mmap() memory protection bits L 202
mmap()flags 203
pollYflags 221
Serial mouse nodes and registcrs 250
PClfeatures. 255
peidriver sbructure clements L 257

XVl

231

25.1

25.2
25.3
25.4

25.5

25.6
25.7

25.8
25.9

271

28.2

29.1
29.2

30.1
30.2
30.3

LIST OF TABLES

DMA transler direction values« v o o o b v e e e e e e 267
Some important netdevice structure elementso e 282
netdevice functional methods -« « o o e e e e 283
netdevice interface Information - . . o o e e e e 281
netdevice directly set fieldso oo e 28

.. . 285
netdevice s L . . . o e e e e e

R 6
netdevice FoaluTes . . o . o v v e e e e e e e e e e e e e e 2:7
netdevice wtility fields oL e e 2
Sockel buffer fields it e e e e e e e e e e e e e e 289
Socket buffer [Uncbions & o 0 o v e e e e e e e e e e e e e e e e e e 291
Multicasting flags L L. L. oo 303
USBdeviceclasses......................................312
MID HNKS o o o o e 322
NOTR and NAND device feabures . . « o o o o o v v v v b e v o e ot e s e e e e e s 323

. 1

APM POWET SEALES . . -« « o v o v v o v e oo e s e e 33
ACPIpowerstates......................................331
ACPI device POWET SEAEES o o o v v v oo e e e e 332

:
]
i

Preface

Objectives

Writing Linux Device Drivers is designed to show expcrienced programmers how to develop

device drivers for Linux systems, and give them a basic understanding and familiarity with the
Linux kernel.

Upon mastering this material, you will be familiar with the differens kinds of device drivers used

under Linux, and know the appropriate APT’s through which devices (both hard and soft) interface
with the kernel.

We will focus primarily on Device Drivers and only secondarily on the Linux Kernel. These
are impossible to separate, since device drivers are an integral part of the kernel. However, most
device drivers use only a limited set of kernel functions and one need not learn everything about the
kernel to do a device driver. Yet while device drivers don’t control important kernel features such as

scheduling or memory management, the more you know about how Linux handles such things the
better a device driver you can write,

In many other operating systems, which are closed source, there is a cleaner separation between a
device driver and the kernel proper. Because Linux is open source, the device driver developer has
full access to all of the kernel. This is both powerful and dangerous.

While we will discuss kernel internals and algorithms we will examine deeply only the functions which
are normally used in device drivers. More details on things such as scheduling, memory management,
etc., belong more properly in a higher level treatment (or lower level depending on how you define
things.)

PREFACE

xviil

Developing device drivers is a big subject both in depth (from deep inside the kernel Lo usage in
user-space) and in breadth (the many types of devices.) In order to keep things manageable we are
going to limit cur range both vertically and horizontally.

"This means we won’t look very deeply into the kernel’s inner plumbing even as it relates to device
ill stop before we get to detailed aspects of

drivers. And for particular types of device drivers we wi
particular devices or classes of devices and hardware, It also means we are going o just ignore whole

classes of devices, such as SCST and wireless, as any treatment of these subjects would rapidly
become both huge and specialized.

Our order of presentation is not axiomalic; Le., we will have some forward referencing and digressions.

The purpose is to get you info coding as quickly as possible. Thus we'll tell you early on how to
jest way, so you can actually write code, and then later

dynamically allocate memory in the simp
cover the subject more thoroughly. Furthermore, the order of subjects is flexible, so fecl frec to vary

it according to your inferests.

Who You Are

write device drivers for the Linux operating system. Maybe
s task as part of your job. The purpose
f time it takes to reach a level of basic

You are interested in learning how to
you are just doing this for fun, but more likely you have thi
here is to ease your path and perhaps shorfen the amount o
competence in this endeavor.

efficient, and optimized your drivers will be depends
started with the present material. T'here is no intent
inux operating system design

How much you get out of this and how bug-free,
on how good a programmer yon were before you
or time here to teach you the elements of good programming or the L

in great detail.

‘I'here are two reasons for this disclaimer:

oks and classes o1 programming methods. For the Linux kernel

o First, there is no shortage of bo
exist and we will mention some of them at appropriate times.

the choices are fower, but they

s Second, my knowledge is not as deep as those who have contributed greatly to the development
onal contributions to the kernel

of Linux, and programming is not my strength. Indeed my pers
code base have been very minor. Tl explain shortly why DI've produced this material despite

these facts.

You should:

¢ Be proficient in the C programming language.
o Be familiar with basic Linux (Unix} utilities, guch as Is, rm, grep, tar, and have a familiarity

with command shells and scripts.
o Be comfortable using any of the available text editors (e.g., vi, emacs.)

« Know the basics of compiling and linking programs, constructing Malkefiles elc.; i.e., be com-

fortable doing application developing in a Linux or Unix environment.

» Have a good understanding of systems programming in a Unix or Linux environment, at least
from the standpoint of writing applications.

&

i
i
E

Xix
¢ Hxperience with any major Linux distribution is helpful but is not, strictly required

If you have had some experience configuri | ilj
you : 3 guring and compiling kernels, and writi
or device drivers, you will get much more out of this matefial. ’ vriting Komel modules end

If you have a good grasp of operating s i
: 3 g system fundamentals and Familiarity with the insi :
other operating system, you will gain much more from this material. Y with the fnsides of any

While our material will not be very advanced, it will strive to be thorough and complete. It is worth

repeating that we are not aiming fo ; i ;i
rebe g lor an experl audience, but instead for a competent and motivated

My History and Why I'm Doing This.

N .

(P)}Ii/ gziﬂi]f lIm a nuc],;ltea.r physicist; I have a PhD in theoretical nuclear astrophysics and I did research
uclear matter, supernova explogions, neutrino diffusion, hr ic

u :) sion, hydrodynamics, shockwaves -

eral relativity, etc. for a couple of decades and published dozens of papers, review’ articles and’lf:(félk

Chaptels in 'he mail‘l phySiCS and astro hyﬁ' i W i) C
° 2 p SICS . Ourna.]S. I] f) [S}]
e ! . ove .] as o1 Lh fa ult;,‘ &t a Humb T Of major

, , A .
.I‘Le l()ieeri teaching in one form or another for more than 30 years. I've tanght advanced as well ag
introductory courses on a wide variety of subjects in physi i i ’)
! physics and astrophysics at both the und
uate and gradunate level as well as su i o 1 e
. 3 pervised a good number of students. ’ i
material such as the present subject matter for more than a decade. nie.. Anc Tve boon teaching

Stc'u Ii%?egl?gt;)(;t a:,i?élg where 1 it:ii the nerve to prepare a book of this nature? ‘The answer is T
. ¢ Never wor rimarily as i '
LA s very nOm T p y as a software or hardware engineer and my path to

, .
I've 111;;(; ‘an}ii prog‘ra.mmed for computers for a long time. The first time I sat down at a cornpiter
Ersze thn;uié; he I]):g;chn;e was ? DEC c]‘;’DP—Q and the keyboard was an actual teletype with booting
er tapes. I've used every operating system and i
been thrown my way over these four decades ortun b s oo thal bas
>cades and fortunately I've b g 3
them as they became deprecated or obsolete. ¥ e heen able to forget about most of

Excl(ip(ti fo.r some low-level data acquisition software in my early student days, all my computer-related
work during my career as a physicist was at the application level. My main projects involved the

lal'ge SC&IQ numel‘i(,ai 3. imula-t-ions Of €x g 8IS I()g (3‘ IIG‘I wit I] t III: numery al (Ia' a, a“(i P, h] al
plOdHl QL ‘, g P i
a-nalysis C()dc Lha;l was quui.‘[‘ed. ¢ ¢

In'tlt?gﬁl I lffﬂ] a,ca:iomtila and entered the business world. I spent the next 5 years working as a consultant
with a major petrochemical company, helping with the i ismi
' ‘ geophysics and seismic analysis soft
for oil exploration and recove i i b ot st
ry. (Equations arc equations whether they descri idi i
expl d e : escrib 1 ;
exploding stars, or seismic waves propagating throngh layers of the earth?s e colliding; mucle,

Duringdthisl period I began to use Linux extensively as it was a Unix-like platform which I could
use to develop and debug code which would then be run on large supercomputer platforms. Towards

the end of this period I was advocati i i
ihe o ocating moving to Linux clusters as a better way to get bang for the

In 1998 my oil company was devoured by a larger one and its technology division was decimated. Oil

as SCIling fOI }.eSS thall $12 a& ba.IlC] a!] th‘? tlm t e CO T4 W Wi
W o e alld h
. o . ' pO 133 ISdOIH as that I‘OSG&.I'Ch a,l'ld

. XX

PREFACE

At the same time a major chips manufacturer approached my employer and agked us to develop
materials to train a bunch of N'T engineers to work with Linux. We found this amusing since a
couple of years before they has asked us to {rain Unix engineers to work on N'T. I was tasked with
developing materials and teaching from them and I have been doing it ever since.

Eventually this project grew into three main classes. One was on systems programming, a second
wag on Linux kernel internals, and the third was on Linux device drivers. My company, Axian of
Beaverton, OR, funded and deployed these classes. Eventually we franchised the material out, with
some modifications, to be used by various Linux. distributors. Tn particular all three classes were
nsed by Red Hat Inc for about 10 years as their curricnlum for Linux developers.

Over that same period T also did & mumber of enginecring projects, mostly involving device drivers or
developing specialized embedded Linux platforms. But I spent the lion’s share of my time teaching
and preparing courseware.

Over those ten years I personally tanght sessions of these classes at least 100 times and also functioned
as the courseware maintainer and contact person for the many other instructors who taught from this
material world-wide, and who contributed in a major way to its improvement.

Gireat efforts were made to keep the material up to date, gince the Linux kerncl morphs rather
quickly. New editions were published four times a year, gradually coming into sync with the new
kernel release schedule.

Over the years many students had requested that the courseware material be obtainable in bookstores
or mail order. Because it was not possible to publish the courscware because of contractual reguire-
ments, it was only possible to obtain it by enrolling in a class, & velatively expensive proposition.

In 2009 the Axian-Red Hat contract expired and gimultaneously T left Axian’s staff. 1 decided
(with Axian’s generous permission) to find a way to rework the material and publish it.

And that is how we got here. This it not just a repackaging of the courses that were previously
marketed and delivered. There has been a rather major rewrite, development of new exercises,
addition of new material and deletion of old material

Even though I have been involved in Linux for more than 15 years I am an outsider. My contributions
to the kernel source are not worth noting, I don’t know personally major kernel developers, 1 don’t
go to conferences, and other than some email relationships with some well-known folks that arose out
of my doing technical review on a number of their Linux-kernel related books, I'm pretty much an
observer and consumer,

I hope that makes my perspective useful to you if you are new to this field, as thereis a 1ot of Linuix-
related chatter, news and documentation which assumes more familiarity than it should, or thinks
things are more obvious or easier than they are to the non-expert. In preparing teaching materials
over the years I've often had to do a lot of hard work to first understand and then present in a simple
way things that were assumed lo be obvious.

Linux Developer Classes Now Available

T don’t expect to get rich by publishing this material. T do hope that if you have Linux programming
training necds you view it as a good advertisement for engaging our services for live in-person training
classes.

The following classes are available:

xxi
¢ Linux Systems Programming
e Linux Deovice Drivers

o Timmx Kernel Internals

Each of these clagsses are a full five days i
. . » days in length. Customization and combinati i :
available. Until demand gets out of control your author is expected to be the msltliif:t%r; eptions are

Yor detailed deS(,I'iptiOIlS and outlines and prici an ogisti WWW
F pricm, dl isi : j
. e N . g ngtICS visif http.// LCO0OD].COIT and

Acknowledgmenis

EHSt of all T must thank‘ my employer of over 15 years, Axian Inc (http://www.axian.com) of
e]:,la_,v}(-l:r on,dOrelgon, for giving me permission to usc material originally under Axian copyl:ight an(:i
which was developed on its dime. In particular, Frank Helle and Steve Bigsel have not only been ex-

tremely generous in allowing me these right .
Ive done. g e rights, but have been true friends and supporters in everything

ﬁr; ht:; ergotr};er (tjicu; % dflc%;ie { Sj}pfarfrlsed.L.iFlux developer classes for Axian (which were most often
dolivored . g le 1 at’s !,raimng‘ dlv:is}on), I interacted with a large number of instructors who
anght from the malerial [was responsible for. They made many suggestions, fixed er d i ‘
cases contributed exercises. Colleagues T would like to express a very Stro’ng thanlfo;gl? l‘:;o 1;;‘:39
; e

Marc Curry, Dominic Duval, T i J
Bill Kerr. ’ , Terry Griflin, George Hacker, Tatsuo Kawasaki, Richard Keech, and

I would also like to thank Alessandro Rubini for hi

' or his warm and generous hospitali i
?fte;‘l 1 lfegan teachmg abou't device drivers and Linux, I showed up at hisphninzyvg?;nmnm Emig
amily. I also thank him for introducing me to the kind folks at OQ’Reilly publishing who gaveyrr::; 1312

opportunity to help with the review of their Linux k i
_ ernel book 3
cnormousty and introduced me to a number of key persona,h'ticss.’ hich s expanded my knoslodge

l'J"\h y . o)) 3 3

by easltii;gng;sg ;cjti}liloowledgmer}t I mL;Sl: give is to the students who have contributed to the material
siions, exposing weaknesses, requesting new material and furnighi i

7 king) mrnishing the if

experiences and needs, which has hopefully kept the material from being pedantic a,rfd m:éeriiallnf)lig

useful. Without them (and the money they paid to sit i
> ty they paid to sit in classe e forced to s :
") this tation | Vs sses and be forced to listen to and interact

I must also thank my family for putti s .
travels. Y y for putting up me with through all of this, especially with my frequent

Finally, T would like to acknowled ;
) . d ge the late Hang A. Bethe, who taught i
of taking on a task just because other people had more expe;rience oa;iu;gt e to never be rightencd

PREFACE

xxit

Chapter 1

Preliminaries

We'll discuss our procedures. We'll also make some comments about
Linux distributions, kernel versions and hardware platforms. We'll promole the Linux Briver
Project. Finally we’ll point to some sonrces of documentation.

1.1 Procedures¢ oo vuue... e e e e e e e e e e e e e 1
1.2 Linux Distributions, 3
1.3 Kermel Versions e, 4
14 Platforms 0t e e e e e e 6
LB MHardware i it s e e, T
1.6 Linux Driver Project 7
1.7 Documentation and Links,,, ... 8

1.1 Procedures

You will need a computer installed with a current Linux distribution, with the important developer
tools {for compiling, etc.) properly deployed.

The emphasis will be on hands-on programming, with most sections having laboratory exercises.
Where feasible labs will build upon previous lab assignments. The solution set can be retrieved from

2 CHAPTER 1. PRELIMINARIES

hitp://www.coop j-com/LDD. As they beeome available, errata and updated solutions will also
be posted on that site.

Lab solutions arc made available so you can see at least one successful implementation, and have
a possible template to begin the next lab cxercise if it is a follow up. In addition, examples as
shown during the exposition are made available as part of the SOLUTIONS package, in the EXAMPLES
subdirectory. Once you have obtained the solutions you can unpack it with:

tar zxvi LDD*SOLUTIONS#*.tar.gz

substituting the actual name of the file.

In the main sohtions directory, there is a Makefile which will recursively compile all subdirectories.
Ti, is smart enough to differentiate between kernel code, user applications, and whether multi-threading

is used.

There are some tunable fealures; by default all sub-directories are recursively compiled against the
source of the currently running kerncl. One can narrow the choice of directories, or use a diffcrent
kernel source as in the following examples, or even pick a different architecture:

make SDIRS=s_22

make KRDOT=/1lib/modules/2.6.31/build

make SDIRS="s_0% s 23" KROOT=/usr/src/linux-2.6.31/build
make ARCH=1386

where KROOT points to the kernel source files. On an x86_64 platform, specilying ARCH=1386 will
compile 32-bit modules. The genmake script the main directory is very useful for automatically

generating makefiles, and is worth a perusal.

For this to work, the kernel source has to be suitably prepared; in particular it has to have a config-
uration file (.config in the main kernel source directory) and proper dependencies set up.

One should note that we have emphasized clarity and brevity over rigor in the solutions; e.g., we
haven’t tried to catch every possible error or take into account every possible kernel configuration

option. The code is not bullet-proof; it is meant to be of pedagogical use,

If you have any questions or feedback on this material contact us at coop@coopj.com.

e The provided solutions will from time to time contain funclions and feafures not dis-
cussed in the main text.

« This is done to illustrate methods to do more than the minimum work to solve the
problem and teach extra material.

o If there ig anything that must be used and is not covered in the material, its omission
is a bug, not a feature, and should be brought to our attention.

1.2. LINUX DISTRIBUTIONS 3

1.2 Linux Distributions

tl‘herc are many Linux distributions, ranging from very widely used to obscure. They vary b
intended usage, hardware and audience, as well as support level. A very comprehensive list can by
found at http://lwn.net/Distributions/. ‘ ©

We Plave tried to keep .this material as distribution-agnostic as possible and thus we will focus an
van‘ﬂla ke-rnels as obtained from http://www.kernel.org. For all but the most specialized diLSf}I'i
butions this won’t present any inconveniences. ‘)

Yqu should be able to cllo any of the laboratory exercises provided herein on any major distribution
using the yendormsupphed kernel, as long as you have the kernel source or development‘k ackages
msiialled. Furthermore, the supplied solutions should compile and run as long as the kernel ip & g y
antique; some minor twiddling may be necessary for kernels earlier than about 2.6.26 S

Occasionally which distribution you are using will matter, but this should only happen wh

(relu.ctemtly) descend into system administration, such as when we must descr)irbe fl)i)e ! Wtfiﬂ tha:
particular' files and directories or how fo install certain required software packages FO(;a 10? o
modern distributions differ much less in these matters than they did in the eart dg - ; Er unately,
we will rarely have to deal with such inconvenicnces. ¥ days of Linux and

tThE mazjzrial has been de\feloped primarily on Red Hat-based systems, mostly on 64-bit variants with
esting also done on 32-bit systems. But it has also been tested on a number of other distributions

Isxplicitly we have used:
s Red Hat Enterprise Linux 5.3
e Fedora 11
o Centos 5.3

Scientific Linux 5.3

Open Suse 11.1

Debian Lenny

Ubuntu 9.04

Gentoo

As far as soltware installation and control is concerned distributions tend to use either RPM-based
f)r ((itleb-based package management. In the above list Red Hat, Fedora, Centos, Scientific Linux
an C?penSU_'SE are RPM—baSed, and Debian and Ubuntu are deb-based. When necessary we
will give required instructions for either of these two broad families. Y

GEtNTOQ is_based on neit.h.er ol’_this packaging systems, and instead nses the portage/emerge
system which mvolvc_)s compiling directly from source. If you are a GENTOO user, and you have
successfuily a((:ic?impl]llshed a fully functional installation (which is generally not a ta’sk for novices)
you won't need delailed instructions i o i bwe hi inst

e e 1 ctions in how to install software or find things, and so we won’t insult

If yOII are I‘unnillg m}y OﬁheI' diSLI‘ibutlon y(14 ‘;h(}”I(ll]’i' I ave T e w kB we
= Y i i
) " l ‘ alx t Oubl ada.ptlng ha are dOlng

4 CHAPTER 1. PRELIMINARIFS

1.3 ¥Kernel Versions

Tor this class we have a number of choices to use for our running kernel and kernel sources. We will
be working with the latest stable Linux kernel series, version 2.6.

"I'he lab exercise sohutions are designed to work with the most recernt Linux kernels (2.6.31 as of this
writing) and with some minor tweals (which are incorporated in the solutions) as far back as 2.6.26
and even earlier (2.6.18) with a few more tweaks.. 'They should also work with all major distributor
kernels of the same vintage.

Because the 2.4 kernel series is still occasionally in usage, we will point out important features that
have changed. However, differences with the previous generations of production kernels (2.2, 2.0)
will be mentioned only briefly lor historical purposes.

Karnel Kernsl
Vergion Version
fple Note

o From place to place in this material you will find boxes like these.

o They may highlight features appearing in the 2.6 kernel that are new or modified, under
active development, or marked as deprecated.

o They may also highlight features in use in the 2.4 kernel that have become obsolete and
should not be used in new code.

The parts of the source to the Linux kernel that are necessary for external module compilation (the
kernel-devel package) should already be stalled on your system.

The latest stable official releases of the various kernel versions can always be obtained from
http://www.kernel.org, as can the latest development kernel, released by Linus Torvalds. A
number of funneling source trees also exist, but are not given the same prominence at the main
kerne! web site. For examples there are staging trees for network isgues, USB, etc.

One more tree deserving special mention is the linux-next project, information about which is ai
http:/ /linux.f-seidel.de/linux-next/ pmwiki/. This kernel tree accumulates patch sets for the
next kernel version; i.c., while 2.6.31 is being developed the linux-next tree collecls and debugs
material appropriate for 2.6.32 and shakes out conflicts etc.

Bv using the site’s finger server, you can ascerbain the latest kernel versions:
¥ g » ¥

$ finpger @kermel.org

The latest stable version of the Linux kernel is: 2.6.30.5

The latest prepatch for the stable Linux kernel tree is: 2.6.31-xc7

The latest snapshot for the stable Linux kernel tree is: 2.6.31-TcT-git2
2.4,37.5

The latest 2.4 version of the Linux kernel is:

1.3. KERNEL VERSIONS

o

The latest 2.2 version of the Linux kernel is: 2.2,.26
The latest prepatch for the 2.2 Linux kernel tree is: 2 2'27—r(:2
The latest -mm patch to the stable Linux kernels is: 2.6.28-rc2-mm1

chrnc}ll verhiiron lnumb‘ering is done with 3 integers, the first two indicating the major release number
and the third the minor release number; ie., 2.6.31 or 2.4.33. Tn addition an e;ctra string may b(;

appended for identification purposes, but is not truly part of i
. 5 s of the k Yor inste
if a kernel is named 2.6.29.2-rt10, ’we have P ® komel version mumbor. For instance,

VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 29
EXTRAVERSION = .2-rt10

in the main Makefile in the kernel source.

The file /usr/src/linux/include/linux /version.h provides some macros to make life cagier:

fidefine LINUX_VERSION_CODE 132638
#define KERNEL_VERSION(a,b,c) ({(a) << 16) + ((b) << 8) + (¢))

where LINUX_VERSION_CODE is obtained using the KE i
where LIVUX.VERST ; £ RNEL_VERSION() macro. Note an equivalent

#define KERNEL VERSION(a,b,c) { (a) * 65536 + (b) # 256 + ())

This header file is constru ing ¢ ilati -
cted during compilation, and won’t exist on a pristine source.

Version-dependent code can be handled as in this example:

finclude <linux/version.h>

#if LINUX_VERSION _CODE < KERNEL_VERSION(2,6,0)
call_usermodehelper(cmd, argv,envp);

#else

call usermodehelper{cmd,argv,envp,wait);
#endif

¢ Such explicit version dependence is frowned up on in the official kernel tree. One is

supposed to abandon backwards compatibility for earli i
I : ar k 3 ;
things uncluttered and most efficient. ernel versions 50 25 10 keop

o Thi . . . - .
This attitude is often viewed as inconvenient by external device driver maintainers as

]!; InakeS lt Hecefbsal'y LO md;l]lta]n dlﬂerel]t d.['l Ver Sourc l O ern
Q0
. o ched. e5 107 ldel‘ k elb lf bugS or

6 CHAPTER 1. PRELIMINARIES

was adopted in which a fourth digit is used for small

Beginuing with the 2.6.11 kernel, a new scheme
controversial patches are accepted,

patches that concern serious bugs and security matters. Only non-
and are numbered as in 2.6.11.1, 2.6.11.2, 2.6.11.3 etc.

The idea has brought a good measure of stability to the development process and quieted some
complaints about not having a stable enough kernel for production. Rules concerning what sort of
patches are accepted for this stable kernel tree can be found at /usr/src/ linux /Documentation

/stable_kernel rules.txt.

1.4 Platforms

We will try and be as platform-independent as possible. However, we will consider the x86 architec-
ture explicitly from time to time and we won’t concerbrate on Linux on TA64, Alpha, SPARC,

PPC, ARM, etc., very much,

There are ab least three reasons to consider the x86 architecture explicitly:

o There are parts of the Linux kernel which musi be platform-dependent, and to understand

what is going on some specificity will be needed.
o You are probably working on an are x86 machine right now..

e Most people developing for Linux are concentrating on this platform.

We'll try to make any platform-dependence explicit. All solutions have been tested on 32-bit and

64-bil x86 architectures.

— 1

Kernal
Yergion
Note

Kernal
Varsion
Note

e The 2.6.24 kernel contained a merge of the 32-bit i386 and 64-bit x86_64 architectures.
The new name is simply x86.

e This involved a major reorganization and rewrite of code and project completion has

taken a while.

e Many files were reorgenized; for instance instead of arch/i386/mm/init.c we have
arch/x86/mm/init_32.c¢ and arch/x86/mm/init_64.c.

g 3 St L i

1.5. HARDWARE
7

1.5 Hardware

Sometintes when p.eople te‘ach device drivers they use simple devices hanging off an external port
Rather than do this we will use the hardware already on the machine such as network cardspan('i.

inpul devices, and piggyback our device drivers on top of th % inst .
ability to share interrapts. p e already instailed ones using the kernel’s

Questions often come up of the following variety:

e How many I/O ports does my device use, and what; addresses do they use?

s What IRQ?
o Do I read bytes or words, how many per interrupt, etc?

o What standards does the device conform to?

TI'IESE gue}.i;tions can be fmswered only from the hardware’s specifications, and sometimes by exam-
3;1mg tde ,a.rdware I}ISGH’.. When you are writing a device driver you must have such knowledge and
;V }31;((); kg(:}lpi 3;)11 can_:i w?te a driver. (Of course it is possible to figure out a lot by probing a device
¢ s specifications secreb, and a lot of drivers have been rever i i Sui

] . i ; se engineercd this way. Bu{

as Linux has matured this has become much rarer and time and energy are better spent, encouiaging

manufacturers to cooperate if th , Gheir devi . . N
work.) P if they want their devices supported, than in doing this kind of dirty

t?:twari I11;'1;11(:!1 iniorr[ngtiton as you can from the hardware people, but be preparcd for some of it to
or out ol date, especially with new devices. Tt is not unusu :

. . _ : 5. Tt is al for the hardware and th

specifications (o not be in sync or for a device to fail to ¢ .
ect . : ompletely follow specifications, S i

tﬁls is because df:v;ce manufacturers are content with making sure the devicepworks adequat(;neltgggi

the market-dominant operating system and then stop asking questions af that point ¢

1.6 Linux Driver Project

The Linux Dri?fer Bro jec‘t i3 a group ol kernel developers and some project managers that provides
open source device drivers free of charge. The project will work closely with manufacturers and when

necessary will sign NDAs (Non-Di ; '
necessn Iy (Non-Disclosure Agreements) as long as the final work has a proper GPLv2

The project is headed by Greg Kroah-Hartman whose weblog is at http: / /www . kroah.com/log

Ne W Volunteers are a.IWELy] G‘lCOme It‘; m 1 Wel)} aArc i t
we. . e am l) 3 : i i V i
/ l .] ./] . / -) g 18 a-t llt p.//llnuxdl‘l erpro_]ect.()rg

dAj goal ozf the project is to br.ing many external drivers into the main kernel tree. A lst of potential can-
Alqites is 1:01-313 zt .http; 7/ llI;u(}i(drlverpro ject.org/twiki/bin/view /Main/QutOfTreeDrivers
Also maintained is a list of devices for which no Linux drivers exis i .
mai : : for st, which can b :
http://linuxdriverproject.org/twiki/bin/view/Main/ DriversNee(’led con be found ot

8 - CHAPTER 1. PRELIMINARIES

1.7 Documentation and Links

The best source of documentation about the Linux kernel is the source itself. In many cases it is
the only documentation. Never trust what you see in books (including this one) or articles without
looking at the source.

The fusr/src/linux/Documentation directory contains a many useful items. Some of the docu-
mentation is produced using the docbook system (sce http:/ Jwww.docbook.org.} To produce
this you go o /usr/src/linux and type

make { htmldocs } psdocs | pdfdocs | rtfdocs }

the different forms giving you the documentation in either as web-browseable, postscript, portable
document format, or rich text format, which will appear in the /usr/sre/linux/Documentation
/DocBook directory. Warning: producing this documentation takes longer that compiling the kernel
itself! For this to work properly you may have to install additional software on your system, such as

jade or latex.

Books
Tinuz Device Drivers, Third Edition, by Jonathan Corbet, Alessandro Rubini, and Greg Kroah-
Hartman, pub. O'Reilly, 2005.

The full, nnabridged on-line version can be viewed at http: //twn.net/Kernel/LDD3/ and down-
Joaded from http:/ /lwn.net/Kernel/LDD3/1dd3_pdl.tar.bz2. and source code for the examples
in the book can be retricved at http:// examples.oreilly.com/linuxdrived /examples.tar.gz.

Understanding the Linuz Kernel, Third Edition, by Daniel P. Bovet and Marco Cesati, pub.
O’Reilly, 2005.

Understanding Linux Network Internals, by Christian Benvenuti, pub. (’Reilly, 2006.
Linux Kernel in a Nutshell, by Greg Kroah-Hartman, pub. (' Reilly, 2006.
‘I'he fall text of the book can be viewed or downloaded at http:// www.kroah.com/lkn/.

(Disclaimer: The author was a technical reviewer on various editions of the previous four O’Reilly
books.)

Linux Kernel Development, Second Edition, by Robert Love, pub. Novell Press, 2005.

Linux Debugging and Performance Tuning: Tips and Techniques, by Steve Best, pub.
TPrentice Hall, 2005.

Kernel Development and Mailing List Sites

http:/ /lwn.net
Linux Weekly News: Latest Linux news including a Kernel section. This very important gite is

supported by user subscriptions, so please consider making an individual or corporate contribution!

http:/ /ldn.linuxfoundation.org/book / how-participate-linux-community
A complete view of the kernel development process and how to join it.

1.7. DOCUMENTATION AND LINKS

http://Iwn.net/Articles/driver-porting
A compendium of Jonathan Corbet’s articles on porting device drivers to the 2.6 kernel

hitp:// ww.linux—foundation.org /en/Linux. Weather_Forecast
Tracks ongoing kernel developments that are likely to achieve incorporation in the near future

http://Ikml.org/
Archive of the Kernel Mailing List, npdated in real time.

http://www.tux.org/lkml

The Kernel Mailing List FAQ: How to subscribe
: § 3, post, cte. to the ke ili i .
matters such as how to submit and use patches. » post, o the kernel mailing list, plus related

http://www.zip.com.au/ akpm/linux/patches/stuff/tpp.txt
Andrew Morton’s guide to the perféct patch.

http:/ / linux.yyz.us/patch-format.html
A detailed guide for how to submit patches to the official kernel tree.

http:/ /linux.yyz.us/git-howto.html

The Kernel Hackers’ Guide to git, th
orael dovelopon, git, the source code management system, used by many senior

http:/ /Ixr.Jinux.no
The Ixr kernel browser: Can be run though the Internet or installed localty.

http:/ /www.kernelnewbies.org

kernelnewbies: An excellent sourc .ation: whi :
to advanced. ree of documentation; while starting at the lowest level and going

http://www.kernelnewbies.org/LinuxChanges
Comprehensive kernel changelog: A detai i i i i
Comprehensive k gelog; detailed list of changes in the kernel and its API from one

http:/ /www kerneltrap.org
kerneltrap: Contains interviews, white papers, ete.

Other Documentation

http: / /wv_va.axian.com/ coop/linux._pubs/
Several articles and talks by Jerry Cooperstein about changes for the 2.6 kernel,

http:/ /www.linuxsymposium.org/2007 /archives.php/
http://ols.fedoraproject.org/OLS/
Full proceedings of Ottawa Li S i i Laini i
e X mmux Symposium from 2001 on, containing many important talks and
http://www.ibm.com/developerworks/linux

0 r e b .
IBM’s Linux developer page, with white papers and other documentation.
http://www.tldp.org

contains a lot of material from the Li i j i i
SO aini 1ot of mate e Linux Documentation Project (LDP), including all current

10

CHAPIER 1.

PRELIMINARIES

Chapter 2

Device Drivers

We'll discuss how device drivers are used and consider the different
types of devices; i.e., character, block and network. We’ll discuss the difference belween mechanism
and policy. We'll consider the disadvantages of loading binary blobs. We will then take a. quick tour
of how applications interface with device drivers and make system calls. Well see how errors are
defined, and how to oblain kernel output using printk(). We’ll consider all this in detail later.

21 TypesofDevicesttt 11
2.2 Mechanism vs. Policy 14
2.3 Avoiding Binary Blobs e 14
2.4 MHow Applications Use Device Driverso v v e, 16
2.5 Walking Through a System Callu... 16
2.6 Error Numbers v 18
2.7 primtk() ... e 19
28 Labs e e e e e e e e e e e 21

2.1 Types of Devices

A device driver is the lowest level of soltware as it is directly bound to the hardware features of
the device. The kernel can be considered an application running on top of device drivers; each driver

11

12 CHAPTER 2. DEVICE DRIVERS

manages one or more piece of hardware while 1he kernel handles process scheduling, filesystem access,

interrupts, elc.

Drivers may be integrated directly into the kernel, or can b'e designed as loadable Ir}lt?(i.ules. tN?gtti]i
modules are device drivers. A driver can be designed as either a modular or a built-in part o

kernel, with little or no change of the source.

In the usual device taxonomy there are three main types:

Character Devices
e Can be written to and read from a byte at a time.
o Well represented as streams.
e Usually permit only sequential access.
e (lan be considered as files.
o Implement open, close, read, and write functions.
e Serial/parallel ports, console (monitor and keyhoard), etc.

o Examples: /dev/tty0, /dev/ttyS0, /dev/dspQ, /dev/1pl

Block Devices
e Can be written to and read from only in block-size multiples; access is.usnally cached.
e Permit random access.

e Filesystems can be mounted on these devices.

s Tn Linux block devices can behave like character devices, transferring any number of bytes at

a lime.
o Hard drives, cdroms, efec.

s Examples: /dev/hdal, /dev/fd0

Network Devices
o Transfer packets of data. Device sees the packets, not the streams.

¢ Most often accessed via the BSD socket interface.

o Instead of read, write, the kernel calls packet reception and transmission functions.
o Network interfaces are not mapped to the filesystemn; they are identified by a name.

s Dxamples: ethO, pppl

21

TYFPILS OF DEVICES

Application

i

Virtual File System

¥

F 3

F

r

character node

bleck node

socket

E 3

A A

¥

character driver

filesystem

4

s

block driver

y

y 4[

TCPAP,
Appletalk, etc

¥

network driver

&

y

Hardware

Figure 2.1: ¥From application to device

Other Types of Devices

Device Types and User-Hardware Connection

USB (Universal Serial Bus) devices also share an underlying protocol. Once again there is a lower

layer of drivers tied to the controller hardware, and then device-specific drivers for the various pe-
ripherals connected to the bus,

i3

What differentiates the types of drivers is the methods they use to connect the kernel with user-
space. Most of the time the connection passes through the VFS (Virtual File System), and then

what methods are invoked depends on whether the access is to a character device node, block device
node, or a socket.

Character drivers may or may not work on character streams; the essential thing is they are most
directly connected o the user and to the hardware.

Block drivers are connected to the hardware, and to the user through the filesystem, caching, and
the Virtual File System (VFS).

Nelwork drivers are connected to the hardware and to the user through varicus kinds of protocol
stacks.

There are other types of devices which don’t fit precisely in the character/block/network division
(although functionally they can be used for any of these three generic classcs of peripherals.)

SCSI (Small Computers Systems Interconnect) devices share an underlying protocol regardless of

function. The hard work goes into writing the driver for the controller hardware which may run many
devices.

14 CHAPTER 2. DEVICE DRIVERS

S Dsvics Driver 1 |

Cﬁ-ﬁtm“ﬁr {Device Drivar 2 '_
Driver CORE pebiditolocleicbedeall
{GESEUHC“ ~§ Device Driver 3 |

Figure 2.2: USB: Controller, Core and Device

User-space drivers, such as the video drivers incorporated into X.Org (http:/ J/www.x.org),
work completely in user-space, but arc given privileges to directl.y address hardw?.re. They use the
joperm() and iopl(} functions to accomplish this, which we’ll discuss when we discuss reading and
writing to I/0O ports.

2.2 Mechanism vs. Policy

Device drivers should maintain a clear distinction between mechanism and policy.

By mechanism, we mean providing exibly the abilities that the device itsell can capably perform.
By policy, we mean controlling how those capabilities are nsed.

In other words it is not up to the driver to enforce certain decisions {unless there is a hardware
limitation) such as:

» How many processes can use the device at once.

o Whether 1/0 is blocking or non-blocking, synchronous or asynchronous, elc.

e Whether certain combinations of parameters can never occur even if they are unwise.
Often a driver may come with a user-space control program, or daemon, which has the capability of

controlling device policy. As such, it should provide methods of setting parameters and modifying
behaviour, perhaps through the use of ioctl’s, /proc, /sys ete.

A driver which fails to distinguish between mechanism and policy is a driver de:‘stined for trouble.
"lomorrow’s user may have quite dillerent needs than today’s. Being human, th.e driver de‘:'eio'per may
even forget why a n;n'row-ing of choices was made. One should never undercstimate the likelihood of
a user behaving in an unexpected fashion.

2.3 Avoiding Binary Blobs

There is a method of deploying a Linux device driver which has been promoted by certain vendors,
with which we strongly disagree.

"The essence of this method is two separate the driver into two parts:

e A binary blob, for which the sourec is not given. T'his blob may contain all or part ol the driver
from another operating system (usually from you-know-who.)

2.3. AVOIDING BINARY BLOBS 15

o An open-source glue layer, which calls into the binary blob as well as the kernel APL.

Kernel APl

Glue Layer
1

&

Binary Biob

Iigure 2.3: Using binary blobs in drivers

Well known examples of this method are employed by Nvidia graphics drivers, ndiswrapper wireless
and NIC drivers, and various ntfs filesystem drivers.

With this method the driver writer can contain in the hinary blob whatever code has been porled in
from another operating system, or whatever code is wished to remain private; the first reason is most
likely legal under Linux licensing, while the second is definitely not.

When such a driver is loaded the kernel becomes tainted which means it is impossible to debug
properly because there is not source available for all the running code.

We strongly disapprove of this method for many reasons, but two are sufficient:

e Loading arbitrary binary code into the kernel is a recipe for disaster.

s Manufacturers promote this as Linux support and don’t support the development of genuine
open-source drivers.

Thus, we won’t teach this method and we discourage even the use of such drivers, much less their
development.

o Use of binary firmware is not the same as the methods described above. "This firmware
is data that could have been put in memory on the card, but vendors find it cheaper to
have the operating system load it. Use of firmware does not cause tainting,

¢ 'T'he line between firmware and binary blobs is gray, and there are Linux distributions

which have problems distributing drivers with require binary firmware, or which don’t
distribute the binary Grmware itself,

16 CHAPTER 2. DEVICE DRIVERS

2.4 How Applications Use Device Drivers

The Unix philosophy is to use a number of elementary methods connected through both piping and
nesting to accomplish complex fasks.

User applications (and daemons) interact with peripheral devices using the same basic system callg
irrespective of the specific nature of the device.

For the moment we'll leave networking device drivers out of the mix since they are not reached
through filesystem entries; we'll concentrate on character drivers which have thinner layers between
the applications and the device driver, and between the hardware and the device driver.

Tor each one of the limited number of these system calls, there is a corresponding entry point in
the driver. The main ones for character drivers are:

open{(), release(), read(}, write(), 1seek(), ioctl(), mmap()

Strictly speaking, the name of the system call and the entry point may diller, but in the above list i;hc’
only one that does is the system call close () which becomes release() as an eniry point. However,
the return type of the system call as well as the arguments can be quite different than that of the

entry point.
Note that there are other kinds of callback functions that may exist in a driver, which are not directly

reached by user system calls:

e Loading and unloading the driver cause initializing and shutting down callbacks to get invoked.
e Higher layers of the kernel may call functions in the driver for such things as power management.

e The driver may execute a deferred task, such as after a given amount of time has elapsed, or a
condition has become frue.

o Interrupts may cause asynchronous execution of driver code, if the driver is registered to handle

particular interrupts.
Once a device driver is loaded, therefore, its methods are all registered with the kernel, and it is event-

driven; it responds to direct entries (which can be multiple and simultaneous) from user applications,
and it executes code as requested by other kernel layers and in response to hardware provocation.

2.5 Walking Through a System Call

Let’s see what actuslly happens when an application attempts to read from a device, which has
already been opened. The application will open and then read with:

char sbuf = malloc(nbytes);
£d = open ("/dev/mydriver", O_RDWR);
nread = read (£d, buf, nbytes);

(Of course we are giving only code fragments and being sloppy about error checking and all that!)

2.5. WALKING THROUGH A SYSTEM CALL 17

'Let’s concentrat‘e on th'e read() call, which is simpler to trace than the open(). The read() is
mter(’:epted by libe, Wth.h knows how to make system cally, and the kerne! is entered through the
function sys_read(}, which is in /usr/src/linux/fs/read_write.c:

g:g:gi; 2;3 iYSCALL_DEFINES(read, unsigned int, fd, char __user =, buf, size_t, count)}
2.6.31: 374 struct file #file;

2.6.31; 375 ssize_t ret = -EBADF;

2.6.31: 376 int fput_needed;

2.6.31: 377

2.6.31: 378 file = fget_light(fd, &fput_nceded);

2.6.31: 379 if (file) {

2.6.31: 380 loff_t pos = file_pos_read(file);
2.6.31: 381 ret = vis_read(file, buf, count, &pos);
2.6.31: 382 file pos_write{file, pos); ’
2.6.31: 383 fput_light (file, fput_needed);

2.6.31: 384 }

2.6.31: 385

2.6.31: 386 return ret;

2.6.31: 387 }

El;his‘klhncltion e}x{ssociates a file kernel data structure with £d, the user application file descriptor;
the kernel works in terms of these structures, not file descript : ,
N) ptors. It then passes off the work to

2.6.31: 277 ssize t vis_read(struct file *file, char __user *buf, size t count, loff_t

*posg)
2.6.31: 278 {
2.6.31: 279 ssize_t ret;
2.6.31: 280
2.6.31: 281 if (! (file~>f_mode & FMODE_READ))
2.6.31: 282 return —-EBADF;
2.6.31: 283 if (!file~>f op || (!file->f_op- i
_ ! .Op~>read && !file->f_op—>ai
2.6.31: 284 return -ETNVAL; ’ ro-read))
2.6.31; 285 if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))
2.6.31: 286 return —~EFAULT;
2.6.31: 287
2.6.31: 288 ret = rw_verify area(READ, file, pos, count);
2.6.31: 289 if (ret »= 0) { ,
2.6.31: 290 count = ret;
2.6.31: 291 if (file-»f_op->read)
2.6.31: 292 ret = file->f_op—> i
_op—>read{fil H
2.6.31: 293 else ¥ (fi1e, buf, count, pos);
2.6.3L: 294 ret = do_sync_read(file, buf, count, pos);
2.6.31: 295 if (ret > 0) { '
2.6.31: 296 fenotify _access(file->f_path.dentry);
2.6.31: 297 add_rchar(current, ret);
2.6.31: 298 }
2.6.31: 299 inc_syscr{current);
2.6.31: 300 }
2.6.31: 301
2.6.31: 302 return ret;
2,6.31: 303 }

18 CHAPTER 2. DEVICE DRIVERS

2.6.31; 304
9.6.531: 305 EXPORT_SYMBOL(vfaz_read);

After checking to see if the file has been opened with permission for reading, and making other
security checks, this function looks at the file_operations structure embedded in this structure
{file->f_op) and if it has a read method defined {£ile->f_op->read), just passes the read request
through to it. It then brings the return value of the read baclk to user-space.

Note that the [unctions fget (), fput() also increment and decrement a reference count of the file
descriptor; the “light” version of these functions is faster for files already being used by a process.

None of the above is actually specific to device drivers; if we had opened a normal file, the method
returned would have been that for the particular filesystem involved. Because our filesystem cntry
pointed to a device, we got device-specific methods instead.

Similar kinds of tracebacks can be performed for any of the entry points.
2.6 Error Numbers

Standard error numbers are defined in header files included from linux/errno.h. The first bunch
come from /usr/src/linux/include/asm-generic/ errno-base.h:

2.6.31: 4 #define EPERM 1 /* Operation not permitted */
2.6.31: 5 #define ENOENT 3 /% HNo such file or directory */
2.6.31: 6 #define ESRCH 3 /% No such process */

2.6.31: 7 #define EINTR 4 /% Interrupted system call */
2.6.31: 8 #define EID 5 /% I/0 error */

2.6.31: 9 #define ENXIO 6 /* No such device or address */
2.6.31: 10 #define E2BIG 7 /% Argument list too long */
2.6.3%1: 11 #define ENOEXEC g8 /% Exec format error */

2.6.31: 12 #define EBADF 9 /% Bad file number */

2.6.31: 13 #define ECHILD 10 /% No child processes */
2.6.31: 14 #define EAGAIN 11 /* Try again */

2.6.31: 15 #define ENOMEM 12 /% Dut of memory */

2.6.31: 16 #define EACCES 13 /+ Permission denied */ ,
2.6.31: 17 #define EFAULT 14 /+ Bad address */

Usually onc returns ~ERROR, while the error return for system calls is almost always -1, with the
actual error code being stored in the global variable errno in user-space.

Thus, in user-space a typical code {ragment would be:

#inclnde <errno.h>

if { ioctl(fd, CMD, arg) < 0){
perror("MYMDRIVER_IBCTLWCALL");
return (errno);

" 27. PRINTK() 19

Remember, it is up (0 you to provide the
: , proper error returns from your § i ic
will catse errno to be set appropriately. Y Fornel entry poiats, which

Usual-ly one can check the status of a function that has a pointer return value by simply
checking for NULL. However, it doesn’t make clear the cause of the error and the Linux kernel

permits encoding the orror code in the return value. The sim i hi i i
permits enco . ple functions that deal with this

void *ERR_PTR (long error);
tong IS_ERR (comst void #ptr);
long PTR_ERR (const void *ptr);

where ERR_PTR(} encodes the error, IS_FRR{) checks f
, _ s for the prese f
PTR_ERR() extracts the actual error code. P e of an eror, and

2.7 printk()

pl‘ln k() £ s 4] e 8 13.1](1 P () p - = .
t 18 qlnll]&l t t}l ar d C flln(.tloll rintf 3 b t h S some 1mport ank erenc I
‘Y . u as some 1 !J dlﬂ. €S

printk{KERN_INFO "Your devi ive: i 3
evice driver was opened with Major Number = %d\n", major_number) ;

printk() has no floating point format support.

Every message in a printk() has a "loglevel” (if ici i ;
B . glevel” (if not explicitly given, a default level i i
T'hese levels are defined in /usr/src/limex/include /linux /kernel.h, ,and are: el s applied).

#define KERN_EMERG "<O>" /% system is unusable */
#define KERN_ALERT "<1>" /% action must be taken immediately */
#tdefine KERN_CRIT "> /% critical conditions */
#define KERN_ERR "<3>" /* error conditions */
#define KERN_WARNING "<4>" /% warning comditions */

#def%ne KERN_NOTICE "<5>" /¥ normal but significant condition */
#define KERN_INFO "< /+ informational */

#define KERN_DEBUG "<T>" /% debug-level messages */

The loglevel {or priority) forces an informational string to be pre-pended to your print stalement

I‘he pSClldO—ﬁle /Proc/sys/kerﬂel/ I] I Ie\ie s 1 yq CIn O] y CIms
prlntk ¥ tS thc 8] 1] 1
- g] l‘ on he 5 lt 11 i]Ilo.t sSystems

which have the following meanings respectively:

20 CHAPTER 2. DEVICE DRIVERS

Table 2.3: printk() logging levels

Value Meaning

Messages with a higher priority than this will be printed to the
console.

console_loglevel

default_message_loglevel Messages without an explicit priority will be printed with this
priority.

minimum_console level Minimum (highest) value to which console_loglevel can be set.

default_console_loglevel Default value for console_loglevel.

Note that a higher priorily means a lower loglevel and processes can dynamically alter the
console_loglevel; in particular a kernel fault raises it to 15.

Messages go into a circular log buffer, with a default length of 128 KB which can be adjusted during
kernel compilation. The contents can be viewed with the dmesg utility; the file /var/log/dmesg
contains the buffer’s contents at system boot.

Where the messages go depends on whether or not syslogd and klogd are running and how they
are configured. If they are not you can simply do cat /proc/kmsg. Generally they will go to
/var/log/messages, but if you are ranning X you can’t see them trivially. A good way to see them
is to open a terminal window, and in that window type tailf /var/log/messages. You can also
access the messages by clicking on System->Administration—>8ystem Log in your Desktop menus.

Ultimate control of kernel Jogging is in the hands of the daemons syslogd and klogd. These can
control all aspects of the behaviour, including default levels and message destinations, directed by
source and severity. There is actually & man page for syslog which also gives the C-language interface
from within the kernel.

Note you can alter the various log levels through parameters to syslogd, but an even easier method
is to exploit the /proc filesystem, by writing to it. The command

echo 8 > /proc/sys/kernel/printk

will cause all messages to appear on the console.

If the same line of output is repeatedly printed out, the logging programs are smart enough to
compress the ouipui, so if you do something like:

for (j=0; j<i00; j++)
printk (KERN_INFO "A message\n"};
printk(KERK_INFO “"another message\n");

what yon will gel out will be:

.28 LABS 21

© Dec 18 15:51:54 p3 kermel: A message

Dec 18 15:51:54 p3 last message repeated 99 times
Dec 18 15:51:54 p3 kermel: another message

Also you should note that you can only be assured that printk() will flush its output if the line ends
Wlth a" \11".

Tt is pretty casy to get overwhelmed with meséages, and it is possible to limit the number of times a
messages gets printed. The function for doing this is:

int printk_ratelimit (void);
and a typical use would be

if (printk_ratelimit())
printk (KERN_WARNING "The device is failing\n");

Under normal circumstances you’ll just get the normal printout. However, if the threshold is exceeded
printk_ratelimit() will start reburning zero and messages will fall on the floor.

The threshold can be controlled with modifying /proc/sys/kernel/printk_ratelimit and
/proc/sys/kernel/printk ratelimit burst. The first parameter gives the minimum time (in
jiffies} belween messages, and the second the number of messages to send before rate-limiting kicks
in.

An optional timestamp that can be printed with each line handled by printk() can be turned on by
setting CONFLG_PRINTK_TIME in the configuration file. 'The time is printed out in seconds as in:

Jun 30 07:54:36 localhost kermel:
Jun 30 07:54:36 localhost kernel:
Jun 30 07:54:43 localhost kernel:
Jun 30 07:54:43 localhost kernel:

707.9217161 Hello: module loaded
TOT.921765] Jiffies=1102136
714.537416] Bye: module unloaded
714 .637422] Jiffies=110875LT7

[B B e B |

2.8 Labs

Lab 1: Installing a Basic Character Driver

In this excrcise we are going to compile, load {and unload) and test the a sample character dnver
(provided). In subsequent sections we will discuss cach of these steps in detadl.

Compiling: First you have to make sure you have the installed kernel source that you are going
to use. The best way to compile kernel modules is to jump inside the kernel source to do it. This
requires a simple Makefile, which need have only the line:

obj—m += labl_chrdrv.o

If you then type

22 CIHIAPTER 2. DEVICE DRIVERS
make -C<path to kernel source> M=$PWD modules

it will compile your module with all the same oplions and flags as the kernel modules in that source
location.

Monitoring Qutput: If you are working at a virtual terminal or in non-graphical mode, you’'ll see
the output of your module appear on your screcn. Otherwise you'll have to keep an eye on the file
/var/log/messages, to which the system logging daemons direct kernel print messages. The best
way to do this is to open a terminal window, and in it type:

tailf /var/log/messages
Loading and Unloading: The easicst way to load and unload the module is with:

insmod labi_chrdrv.ko
rmmod labl_chrdrv

Try and load and unload the module. Tf you lock at /proc /devices you should see your driver
registered, and if you look at /proc/modules (or type lsmod) you should see that your module is
loaded.

Creating a Device Node: Before you can actually use the module, you’ll have to create the
device node with which applications interact. You do this with the mknod command:

mknod /dev/mycdrv c 700 O

Note that the name of the device node (/dev/mycdrv) is irrelevant; the kernel identifies which driver
should handle the system calls only by the major number (700 in this case.) The minor number
{0 in this case) is generally used only within the driver.

Using the Module: You should be able to test the module with simple commands like:
echo Some Imput > /dev/mycdrv
cat somefile > /dev/mycdrv

dd if=/dev/zerc of=/dev/mycdrv count=1
dd if=/dev/mycdrv count=1

We've only skimmed the surface; later we will consider the defails of each of these steps.

Chapter 3

Modules I: Basics

, .We’Il begin our discussion of modularization techniques under Linux.
We'll define what a module is and describe the command level utilities used to manipulate them.

We’ll‘discuss how to compile, load, and unload modules, how to pass parameters to them, and how
they interact with hotplugging. 1

3.1 What is a Module?

3.2 A Trivial Example - Hello World gi
3.3 Module Utilities, 25
3.4 Passing Parameters 0 27
8.5 CompilingaModule 28
36 Modulesand Hot Plug i . 33
3.7 Labs . . L. e e 34

3.1 What is a Module?

Modules are relocatable object code, that can be loaded or unloaded dynamically into or from the
kernel as needed.

While most modules are device drivers, they need not be.

99

24 CHAPTER 3. MODULES I: BASICS

To a rough approximation, a module uses the Linux kernel like a shared lbrary, linking .in to it ouly
through a list of symbeols and functions which have been exported and thus made available to the
module.

Modules may depend on each other and form a stack.

"Type Ismod (or cat /proc/modules) to see what modules are presently loaded.

3.2 A Trivial Example - Hello World

Here is an example of a very trivial module. It does nothing but print a statement when it is loaded, -

and one when it is unloaded.

#include <linux/module.h>
#inclnde <linux/init.h>

shatic int __init my_init (void)

{)
printk (KERN_INFO "Hello: module loaded at Ox%p\n", my_init);
return 0;

¥

gtatic void __exit my_exit (veid)

{ Y ® ').
printk (KERN_INFO "Bye: module unloaded from Ox¥p\n", my_exit);

¥

module_init (my_init);
module_exit (my_exit);

MODULE_AUTHOR (“"A GENIUS");
MODULE_LICENSE ("GPL v2");

Almost all modules contain callback [unctions for initialization and cleanup, wl}ich are specified with
the module_init() and module_exit ()} macros. These callbacks are automatically calied when the
module is loaded and nnloaded. A module without a cleanup function cannot be unloaded.

In addition, use of these macros simplifies writing drivers (or other code) wh'ich can bfe u'sed either as
modules, or directly built into the kernel. Labeling functions with the altribules __init or __exit
is a refinement to be discussed later.

Any module which does not contain an open source license (as specified with the MDDI%LE_LICEN‘SE()
macro) will be marked as tainted: it will function normally but kernel developers will be hostile to
helping with any debugging.

3.3, MODULE UTILITIRES 95

o You will still see modules with the outdated form:

#include <linux/module.h>

int __dinit init_module (void)

{
printk (KERN_INFO "Hello: init_module loaded at Ox¥%p\n", init_module);
return 0;
¥
void __exit cleanup_module (void)
{
printk (KERN_INFO "Bye: cleanup_module loaded at Ox¥p\n", cleanup_module)};
}

s While direct use of the callback functions (init_module() and cleanup_module(})

will still work, using them without employing the module_init () and module_exit ()
macros is deprecated.

o Many drivers in the kernel still use just the init_module(), cleanup wodule() func-
tions; it saves a few lines of code, especially for a driver that is always loaded as a module.
While this is basically harmless, eventually use of this form will be extinguished.

3.3 Module Utilities

The following utilities run in user-space and are part of the module-init-tools package. They are
not directly part of the kernel source. Each has a rather complete man page.

The configuration file /etc/modprobe.conf (as well as any files in the directory /ete/modprobe.d)
is consulted frequently by the module utilities. Information such as paths, aliases, options to be passed

to modules, commands to be processed whenever a model is loaded or unloaded, are specified therein.
The possible commands are:

alias wildcard modulename
options modulename option ...
install medulename command ...
remove modulename command ...
include filename

The install and remove commands can be used as substitutes for the defanlt insmod and rmmod
commands. '

26 CHAPTER 3. MODULES I: BASICS

e All Linux distributions prescribe a methods for the automatic loading of particular
modules on system startup. ITowever, the use of udev in modern Linux distributions

usually obviates such needs.

o On Red Hat-based systems the file /etc/rc.modules will be run (if it exists) out of
/etc/re.d/re.sysinit. In this fle any explicit module loading can be done throngh the
full use of the module loading commands.

o On Debian-based systems any modules listed in /etc/modules will be loaded. (Only
the names of the modules go in this file, not loading commands.) on GENTOO systems,
the same role is played by the files in /etc/modules.autoload.d.

o On SUSE-based systems the file that needs to be modified is /etc /sysconfig/kernel.

Ismod

lsmod gives a listing of all loaded modules. The information given inchudes name, size, use count,
and a list of referring modules. The content is the same as that in /proc/modules.

insmod

insmod links a loadable module into the running kernel, resolving all symbols. The —f option will
fry to force loading with a version mismatch between kernel and module.

insmod can be used to load parameters into modules. For example,

insmod my_net_driver.ko irg=1¢

rmmod

rmmod unloads modules [rom the running kernel. A list of modules may be given as in:
remmod my_net_driver my_char driver

Note no ko exbension is specilied.

depmod

depmod creates a Makefile-like dependency file (/lib/modules /KERNEL-VERSION-NUMBER
/modules.dep) based on the symbols contained in the modules explicitly mentioned on the command

line, or in the default place.
depmod is vital to the usc of modprobe. Tt is always run during boot. Under most circumstances

it should be run as

3.4 PASSING PARAMETERS 27
depmod —ae

5}; (;r;ierdfolr depTrlllmgl a?d n}odprobe to find modules they must be in prescribed places, under
ib/modules. The file /etc/modprobe.conf is consulted ¢ ti . ’
depmod is run. very time a module is loaded or when

‘When modules are built in external directories and install it;
3 ed with the modul i :
are placed in the extra subdirectory. wrhes-Anatall targel, they

modprobe
modprobe can load (or unload with the —r option) a stack of modul
> s, es th 3 5 -
and can be used instead of insmod. : odulen that depend on each other,

It can alsc be used to try a list of modules, and quit i '
']) quit whenever one is first found and ;
loaded. It is also heavily dependent on /ete/modprobe.conf. el sucoessiully

Whenever therc are new modules added, or there is a change in location depmod shouid be run

The modtuils package requires use of the . ko extension with i
) s . with insmod, but
require no extension. ’ iodprobe and rmmed

ara. I8 G p SCd tO IIlOdp[Obe 1 (5] y trh Y - Y
I met?l 8 Call be A, n (lh same wa €y are c],SSed .0 (o)
p !J lnSmOd, 1.e 9 tl can

modprobe my_net_driver irg=10

3.4 Passing Parameters

Paramelers to be passed to modules must be explici
St xplicitly marked as h drimer 3
For example, Y ed as such and type checking is done.

int irq = 12;

module_param (irq, int, 0);
There are a number of macros which can be used;

#include <limux/moduleparam.h>

module_param (name, type, perm);
module_param_named (name, value, type, perm);
module param_array (name, type, num, perm);
module_param string (name, string, len, perm);

I.n the b‘asic module_param() macro, name is the variable name, type can be byte, short, ushort
int, uint, long, ulong, charp, bool, invbool. ’ ’

The perm parameter is a'permissions mask which is used for an accompanying entry in the sysfs
filesystem. If you are not intercsted in sysfs, a value of 0 will suffice. Typically one can use the value

28 CHAPTER 3. MODULES I: BASICS

S_TRUGO (0444) for read permission for all users. (See fusr/src/linux/ include/linux/stat.h for
all possibilities.) Tf a write permission is given, the paramcter may be altered by writing o the sysfs
filesystem entry associated with the module, but note that the module will not be notified in any way
when the value changes! Tn this case the permission might be S_IRUGD | S_IWUSR {0644).

The module_param_named() variation has name as the string used to describe the variable when
loading, which does not have to be the same as value (which is not the actual value of the parameter
but rather the name of the parameter as used in the module.) Note that these are macros, and neither
argunent has to appear within quotes.

Tn the module_param_array () macro the integer variable num gives the number elements in the array
which can be used as in the following example:

insmod my_module irg=3,4,5

The module_param_string() macro is for passing a string directly into a char array.

With this method it is possible to build your own data types; it is extensible. For more details see
http:/ /lwn.net/Articles/22197/.

A featurc of this method is that it still works when a driver, or other kernel facility, is compiled as
built-in rather than as a module. Kernels earlier than 2.6 required usc of a separate set of functions
(using the __setup() macros) to pass parameters to the kernel on the boot command line. This
makes it even easier to write code that can be used as either a module or built-in withou! changing

the source.

The way Lo pass such a parameter to the kernel as a boot parameter is to prefix ils name with the
name of the module and a .; thus the kernel boot command line might look Like:

linpux Toot=LABEL=/ ... my_module.irg=3,4,5 ...

A list of all known passable parameters can be found at /Jusr /src/linux/Documentation /kernel-
parameters.txt.) ‘

There are a number of related macros, defined in /usr/src/linux /include/linux/module.h that
can be used in modules:

MODULE_AUTHOR (name) ;
MODULE_DESCRIPTIDN(deSC);
MODULE_SUPPORTED_DEVICE (name};
MODULE_PARM_DESC(var,desc);
MODULE_FIRMWARE (filename) ;
MODULE_LICENSE(license);
MODULE_VERSION (versiomn);

The information stored therchy is generated by running the command modinfo.

3.5 Compiling a Module

Tn order to compile modules you must have the kernel source installed; or at least those parts of it
which are required. Those should always be found under /lib/modules/$(uname -r)/build.

3.5, COMPILING A MODULE 29

The sir}apl_&minded way to compile a module would require specilying the right. Aags and options
and pointing to t'he fzorrect kernel headers. However, this method has long been deprecated and in,
the 2.6 kernel series it has become impossible to compile completely outside the kernel source tree

Compil:fmtio.n of modules for the 2.6 kernel requires a kernel source which has either been through
a compilation stage, or at least has been through a make prepare, as this is required to generfte

necessary ,Onﬁgllra.tion alld dep()l’ld {1 Vv iI]fOl‘ma.tiOIl On a Nee(IS C
C € - £ 150 A Of i ini
7 . ‘O . 4 course a .conf 1g Contalnlng

The a-pp¥oved1appr(?ach is still to work outside the kernel source tree, but to jump into it to do the
compilation. For this you'll need at least a minimal Makefile with at least the lollowing in it: }

obj-m += trivial.o
If you then type
make -C/lib/modules/$(uname —r)/build M=$PWD modules

it will compile your module with all the same options and flags as the kernel modules in that source

location {for the currenily running kernel}. Lo compi
: . :ompile for a kernel other than th is i
you just need to place the proper argument with the ~C option. © oe that i runving,

Installing the modules in the proper pl i
place so they can be automatically f ilitie
depmod, requires the modules_install target: Y found by utilitios such as

make -C/lib/modules/$(uname -r)/build M=$PWD modules_install

By default the oulput is briel; to make it more verbose you can set the environmental variables V=1

or KBUILD_VERBOSE=1. You could do this, for example, b i
ke Vot , ple, by typing export KBUILD_VERBOSE=1; make

If it is necessary to split the source info more th i
: . an one file, then the -r option to Id (which i
automatically invoked by gee) can be used. A simple example (for the Makefile) would be'(w e

obj-m += mods.o
mods—objs := modl.o mod2.0

In the main directory of th(? solutions, you will find a script titled genmake which can automaticall
generale proper makefiles; it can be a great time-saver! Here is what it looks like: |

#!/bin/bash

Automatic kernel makefile generation

Jerry Cooperstein, coop@coopj.com, 2/2003 - 1/2009
License: GPLv2

0BJS="" # list of kernel modules (.o files)
K_g="" # 1list of kernel modules (.c files)
g_g="v # list of userland programs (.c¢ files)
U_x=n" # list of wserland programs (executables)

30 CHAPTER 3. MODULES I. BASICS

T_5="" # list of userland programs {.c files) that use pthreads
T_X="1" # list of userland programs {executables) that use pthreads
ALL="" # list of all targets

CFLAGS _U_X="-02 -Wall -pedantic" # compile flags for user programs

CFLAGS_T_¥=$CFLAGS_U_X" -pthread" # compile flags for threaded user programs

set the default kernel source to the runming one; otherwise take from
first command line argument

if { P$KROOT" == "' 1 ; then

KROOT=/1ib/modules/$ {uname -r)/build

[! —-d "$KROOT"] && KROOT=/usr/src/limux—${uname -1}
fi

abort if the source is not present

KMF=$KROOT /Makefile
KERNELSRC=$ (grep "“KERNELSRC" $KMF | awk ’> {print $3;}’)

if ["$KERNELSRC" != ""] ; then
echo Primary Makefile is not in $KROOT, using $KERNELSRC
EMF=$KERNELSRC/Makefile

fi

if [! -4 "$KROOT" 1 || [! —f "$KMF"] ; then
echo kernel source directory $KROOT does not exist or has no Makefile
exit 1

fi

additional flags?

if ["$KINCS" t= "1] ; then
CFLAGS_U_X="$CFLAGS_U_X -I$KROOT/include"
CFLAGS T _X="$CFLAGS_T X -I$KRO0T/include”
fi

extract the VERSIDN info from the Makefile

KV=$(grep ""VERSION =" $KMF | awk ° {print $3;}%)
KP=%{grep ""PATCHLEVEL =" $KMF | awk ’ {prinmt $3;}°)
KS=$(grep ""SUBLEVEL =" $KMF | awk ’ {print $3;}°)
KE=$(grep ""EXTRAVERSION =" $KMF | awk * {print $3;1}°)
KERNEL=$KV . $KP . SKS$KE

eche KERNEL=$KERNEL, KV=$KV KP=$XP KS=$KS KE=$XE
check on the major release versiom
if [$KP 1= 6 1 ; then

echo KROOT=$KROOT is not 2.6, exiting

exit 1

fi

comstruct lists of kernel and user sources and targets

3.5. COMPILING A MODULR 31

skip empty directories

if ["$(find . -maxdepth 1 -name "#.¢")" == "'] . then
echo No need to make Makefile: no source code
exit

£i
for mames in *.c¢ ; do
exclude files with NOMAKE or .mod.c files

if ["$(grep NOMAKE $names)" 1 || I "$(grep vermagic $names)” 1 ; then
echo “$names is being skipped, it is not a modunle or program"
else
if ["$(grep \<linux\/module.h\> $names }"] ; then
FILENAME DOT0=$%(basename $names .c).o
OBJS=$0BJS" $FILENAME_DOTO"
K_5=%K_S" $names”
else
is it a pthread’ed program?
if ["$(grep ’\<pthread.h\>’ $names)"] ; then
FILENAME_EXE-§ (basename $names .c)
T_X=$T_X" $FILENAME_EXE"
T_S=$T_S" $names"
else
U_X=$U_X" $(basename $names .c)"
U_5=$U_8" $names”
fi
fi
fi
dene

CLEANSTUFF="$U_X $T_X"
maybe there are no kernel modules
if ["$0BJS" != ""] ; themn
CLEANSTUFF="$CLEANSTUFF"" Module.symvers modules.order"

fi

get ALL the targets

if ["$U X" 1= v®] . then ALL=$ALL" userprogs"; f£i
if ["$T_X" != ""] ; then ALL-$ALL" threadprogs"; fi
if ["$0BJS® != "] : then ALL=$ALL" modules" ;3 fi

echo if you are curious :>
echo K_S5=$K_S 0BJS=$0BJS U_S=$U_S U X~$U_X T_S=%$T_S T_X=$T_X

TR RR RS R R R R R
We’re done preparing, lets build the makefile finally!

get rid of the old Makefile, build a new one

32 CHAPTER 3. MODULES I: BASICS

rm -f Makefile

echo "#i#f Automatic Makefile generation by ’gemmake’ script " >>Takefile .
echo "### Copyright, Jerry Cooperstein, coop@ccop].com 2/2003 - 1/2000 #HHH >>Ma¥?ille
echo "#i# License: GPLv2 #H#" >>Makefile
if ["$K_S8" 1= ""] ; then

echo -e "\nobji-m += $0BJS" »> Makefile
echo ~e "\nexport KROOT=$KRDOT" >> Makefile
if ["$ARCH" != "%] ; then
echo -e "\nexport ARCH=$ARCH" >> Makefile
fi
fi
echo —& "\nallofit: $ALL" >> Makefile

if ["$K_S" 1= ""] ; then
echo "modules:" >> Makefile
echo —e "\t@\$(MAKE)} -C \${KROOT) M=\$(PWD) modules"” >> Makefile
echo "modnles_install:" >> Makefile
acho —e "\L@\$(MAKE) -C \$(KROOT) M=\3$(PWD) modules_install" >> Makefile
echo "kernel_clean:" >> Makefile
echo —e "NtO\S{MAKE) ~C \$(KROOT) M=\$(PWD) clean" >> Makefile
fi

if ["$U_X" '= "v] ; then
echo —e "\nuserprogs:" >> Makefile
echo —e "\t@\${MAKE) \\" >> Makefile
echo —e "\t\tCFLAGS=\"$CFLAGS_U_X\" \\" >> Makefile
if ["$LDLIBS" !'= ""] ; then
acho —e "\t\tLDLIBS=\"$LDLIBS\" \\" >> Makefile
fi
if ["$CPPFLAGS" != ’?] ; then
echo —e "\t\tCPPFLAGS=\"$CPPFLAGE\" * >> Makefile
fi
echo —e "\t$U_X" >> Makefile
fi

if ["§T_X" !'= ""] ; then
echo -e "\nthreadprogs:" >> Makefile
echo —e "\t@\&(MAKE) \\" >> Makefile
echo —e "\t\tCFLAGS=\"$CFLAGS_T_X\" \\" >> Makefile
if ["$LDLIBS" != ""] : then
echo —e "\t\tLDLIBS=\"$LDLIBS\" \\" >> Makefile
£i
if ["$CPPFLAGS" != *?] ; then _)
echo —e "\t\tCPPFLAGS=\"$CPPFLAGS\" \\" >> Makefile
fi
echo —e "\E3T_X" >> Makefile
fi

lf { "$K_S" != in] : then

echo —e "\nclean: kernel_cleam" >> Makefile
else

echo —e "\nclean:" >> Makefile
£

3.6. MODULES AND HOI' PLUG 33

echo —e "\trm -rf $CLEANSTUFF" >> Makefile
exit

LR R R R HHHHHA R A

3.6 Modules and Hot Plug

When the system is aware that a new device has been added or is present at boot, it is also often

furnished with information describing the device. This usually includes (but is not limited to) a
unigue vendor id and product id.

Drivers can specify which devices they can handle, and when modules are installed on the system,
catalogues are updated. Thus, the hot plug facility (in user-space) is able to consult these tables
and automatically load the requived device driver, if i} is not already present.

For this to work the driver has to use the macro:

MGDULE_DEVICE TABLE(type,name}

where type indicates the type of driver and name points to an array of structures, each entry of
which specifies a device. The exact structure depends on the type of device. For example:

static const struct pci_device_id skge_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_3C0OM, PCI_DEVICE_ID 3COM_3C940) ¥,
{ PCI_DEVICE(PCI_VENDOR_ID_3CUM, PCI_DEVICE_ID_3COM_3C940B) },

{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, I,
{0}

V¥

MODULE_DEVICE_TABLE(pci, skge_id_table);

Note the use of the PCI_DEVICE() macro; each type of subsystem has such macros Lo aid in filling
out the table of structures.

The allowed types and the structures for them are delineated in /usr/src/ linux /include/linux
/mod_devicetable.h and include:

usb

pci
ieeeidsd
pemcia
iZ2c
input
eisa

pup
serioc

and each one has a structure associated with it, such as

struct usb_device_id,
struct ieeel394_device_id, etc.

34 CHAP1ER 3. MODULES I: BASICS

Furlhermore, when one runs the make modules_install step one updates the appropriate files in

/lib/modules/$(uname -r). such as modules. pcimap, modules.usbnap, elc.

When & new device is added to the system, these files are consulted to see if it is a known device,
and if so and the required driver is not alrcady loaded, modprobe is run on the proper driver.

3.7 Labs

Lab 1: Module parameters

Write a module that can take an integer parameter when it is loaded with insmod. It should have -

a default value when none is specified.

Load it and unload it. While the module is loaded, look at its directory in /sys/module, and see if

you can change the value of the parameter you established.

Lab 2: Imitialization and cleanup functions.

"Fake any simple module, and see what happens if instead of having both initialization and cleanup

functions, i has:

e Only an initialization function.
e Only a cleanup function.

s Neither an initialization nor a cleanup function.

Tn these cases see what happens when you try to load the mf;dule, and if that succeeds, when you

try to unload it.

Chapter 4

Character Devices

track of their usage count.

4.1

.................................. 36
4.2 Major and Minor Numbers 36
4.3 Reserving Major/Minor Numbers vu oo .. 38
4.4 Accessing the Device Node e e e 40
4.5 Registering the Device e e e e e e e e e e e e 41
46 udevand HAL e e e e e e ek e e e e . . 42
4.7 file_operations Structure e e e e e et e e e e e e 44
4.8 Driver Entry Points e e e F e e e e e e e e e e e e 46
4.9 The file and inode Structures e e 49
4.10 Module Usage Count ., e e e e e e e e e e e e e e 51
411 Labso e e e e e e e e e b2

21

We'll begin our detailed discussion of building character device drivers.
We'll talk about device nodes, how to create them, access them, and register them with the kernel.
We'll discuss the udev/HAL interface. Then we’ll describe in detail the important file_operations
data structure and itemize in detail the driver entry points it points to. Two other mnportant data
structures, the file and inode structures are also considered. Finally we show how modules keep

36 CHAPTER 4. CHHARACTER DEVICES

4.1 Device Nodes

Character and block devices have filesystem entries associated with them. These nodes can be used
by user-level programs to communicate with the device, whose driver can manage more than one
device node.

Fxamples of device nodes:

lrwxrwxrwx 1 root root 3 May 25 01:56 cdwriter -> hda
brw—rw——— 1 coop floppy 2, O May 25 01:66 fd0

brw-rw-—— 1 coop floppy 2, 4 May 25 01:56 f£d0D360
bru-rw--—— 1 coop floppy 2, 16 May 25 01:56 £40D720
cru-rw——— 1 root 1p 99, 0 May 25 01:56 parport{
crw-rw——— 1 root 1lp 99, 1 May 26 01:56 parporti
crw—xw———— 1 root lp 99, 2 May 25 01:56 parportl

Device nodes are made with:

mknod [-m mode] /dev/name <type> <major> <minor>

a.g., mknod -m 666 /dev/mycdrv ¢ 264 1

or from the mknod () system call.

4.2 Major and Minor Numbers

The major and minor numbers identify the driver associated with the device. Generally speaking,
all device nodes of the same type (block or character) with the same major number use the same
driver.

The minor number is used only by the device driver to dilferentiate between the different devices
it may control. ‘I'hese may either be different instances of the same kind of device, (such as the first
and second sound card, or hard disk partition) or different modes of operation of a given device (such
as different density Hoppy drive media.) :

The major and minor numbers are stored together in'a variable of type dev_t, which has 32 bits,
with 12 bits reserved for the major number, and 20 bits for the minor mumber.

The internal bit layout is complicated lor historical reasons, and one is not guaranteed that it will
not change in future kernel versions. Thus one should always use the following macros to construct
(or deconstruct) major and minor numbers from a dev_t structure:

4.2, MAJOR AND MINOR NUMBERS 37

Table 4.1: Device node macros

Macro Meaning

MAJOR(dev_t dev}; Extract the major number.

MINOR(dev_t dev); Extract the minor number.

MKDEV(int major, int minor); Return a dev_t built from major and minor numbers

One can also use the inline convenience functions:

unsigned iminor(struct incde *inode); /* = MINOR(inode->i_rdev) */
unsigned imajor(struct inode *incde}; /* = MAJOR(inode->i_rdev) #*/

when one needs Lo work with inode structures.

Kemnel
Version
Note

Kernel
Yersion
Nete

o In the 2.4 kernel, device numbers werc packed in the kdev_t type, which was limited
to 16 effective bits, even divided between minor and major numbers, so that each was
limited to the range 0 - 255.

¢ In the 2.4 kernel once a driver regisiered a major number, no other driver could be
registered with the same major number, and all minor numbers belonged to the driver.

s In the 2.6 kernel, however, one registers a range of minor numbers which can be loss
than all available, and indeed two concurrently loaded drivers can have the same major
number, as long ag they have distinct minor number ranges.

A list. of the major and minor numbers pre-associated with devices can be found in /usr/src/linux
/Documentation/devices.txt. (Note the major numbers 42, 120-127 and 240-254 are reserved
for local and experimental use.) Symbolic names for assigned major numbers can be found in
Jusr/sre/linux/include/linux /major.h. Requesting further device number reservations is prob-
ably prohibited, as more modern methods use dynamical allocation.

. Note that device numbers have meaning in user-space as well; in fact some Posix system calls such

as mknod () and stat() have arguments with the dev_t data type, or utilize structures that do. For

38 CIIAPTER 4. CIHARACTER DEVICES
example:

$ stat vmlinuz-2.6.26-rch

File: ‘vmlinuz-2.6.26-rch’

Size: 2849808 Blocks: 5592 10 Block: 1024 regular file
Device: 80Bh/2053d Incde: 22090 Links: 1
Access: (0844/-rw-r——r—) Uid: (o/ root) Gid: (O/ root)
Access: 2008-06-07 13:20:51.000000000 -0500
Modify: 2008-06-07 13:20:51.000000000 0500
Change: 2008-06-07 13:20:51.000000000 -0500

shows the file resides on the disk partition with major number 8 and minor number & (/dev/sdab),
which is listed at 805h (hexadecimal) or 2053d {decimal).

4.3 Reserving Major/Minor Numbers

Adding a new driver to the system (i.e., registering it) means assigning a major number to it, usually
during the device’s initialization routine. For a character driver one calls:

#include <linux/fs.h>

int register chrdev region (dev_t first, unsigned int count, char *name);

where first is the lrst device number being requested, of a range of count contiguous numbers;
usually the minor number part of first would be 0, but that is not required.

name is the device name, as it will appear when examining /proc/devices. Note it is not the same
as the node name in /dev that your driver will use. (The kernel decides which driver to invoke based
on the major/minor number combination, not the name.)

A retwrn vahie of 0 indicates success; negative values indicate failure and the requested region of de_rice
numbers will not be available, Note that mknod will still have to be run to create the appropriate
device node(s).

Tt is important when undoing the registration to remove the association with device numbers, once
they are no longer needed. This is most often done in the device cleanup function with:

#include <linux/fs.h>

void unregister_chrdev_region (dev_t first, unsigned int count) ;

Note that this will not remove the node itself.

If you fail to unregister a device, you'll get a segmentation fault the next time you do
cat /proc/devices. It is pretty hard (although not impossible) to recover [rom this kind of er-
ror withoul a system reboot.

.4.3. RISSERVING MAJOR/MINOR NUMBERS 39

Kemel Kamel
Vergion Version
Note Note

e In the 2.4 kernel only 8-bit major and minor numbers were available, and the functions
for registering and de-registering were:

#include <linux/¥fs.h>

int register_chrdev (unsigned int major, const char *name,
struct file operations *fops);
int unregister_chrdev (umnsigned int major, const char #name);

¢ Dynamic allocation was accomplished by specifying 0 as a a major number; the return
value gave the supplied major number which was obtained by decreasing from 254 until
an unused number was found. (When dynamic allocation was not requested, the return
value upon success was 0, which was confusing.)

e We'll discuss the struct file_operations pointer argument shortly, which delincates
the methods used by the driver.

* Only one device driver could use a given major number at ai, a time; in the 2.6 kernel it
is required that only major/minor number set is unique.

o This interface, while more limited that the new one, is very widely used in the kernel

and there is no great rush to eliminate it. However, new drivers should use the improved
32-bit methods.

Dynamic Allocation of Major Numbers

- Choosing a unigue major number may be difficalt: dynamic allocation of the device numbers is the

proper method for all new drivers and can be used to avoid collisions. This is accomplished with the
function:

#include <linux/fs.h>

int alloc_chrdev_region (dev_t #first, unsigned int firstminor, unsigned int count,
char *name);

where first is now passed by address as it will be filled in by the function. ''he new arg'llment,

firstminor is obviously the first requested minor number, (usually 0.} The de-registration of the
device numbers is the same with this method.

The disadvaniage of dynamic allocation is thai the proper node can not be made until the driver is
loaded. Furthermore, one usually needs to remove the node upon unloading of the driver module.

40 CHAPTER 4. CHARACTER DEVICES

Thus some scripting is required around both the module loading and unloading steps.

While it would be possible to have a module do an exec() call to mknod and jump out to user space,
this is never done; kernel developers feel strongly that making nodes belongs in user-land, not the
kernel.

Even better, you can use the udev facility to create a node from within your module. We'll show
you how to do this later.

4.4 Accessing the Device Node

Under Unix-like operating systems, such as Linux, applications access peripheral devices using the
same functions as they would for ordinary files. This is an essential part ol the everything is a file
philosophy. For example, listening to a sound would involve reading from the device node associated
with the sound card {generally /dev/audio).

There are a limited number of entry points into device drivers, and in most cases there is a one
to one mapping of the system calls applications make and the enlry point in the driver which is
exercised when the call is made.

Yor a given class of devices, such as character or block, the entry points are the same irrespective of
the actual device itself. In the case of character drivers, the mapping is relatively direct; in the case
of block drivers there is more indirection; i.c., several layers of the kernel may intercede between the
system call and the entry point; a read would involve the virtual filesystem, the actual filesystem, and
cache layers before requests to get blocks of data on or off a device are made to the driver through a
read() or write() system call.

"Phe following are the main operations that can be performed on character device nodes by programs
in user-space:

int open (const char pathname, int flage);

int close {(int £d);

gsize_t read (int £d, void *buf, size_t count);
ssize_t write (int fd, comst void *buf, size_t count) ;

int ioctl (int fd&, int request, ...);
off_t lseek (int fd, off_t offset, int whence) ;
void *mmap (void *start, size_t length, int prot, int flags, int fd, off_t offset);

int poll (struct pollfd #fds, nfds_t nfds, int timeout);

These enbry points all have man pages associated with them.

"The device driver has entry points corresponding to these functions; however names and arguments
may differ. In the above list, for example, the system call close() will lead to the entry point
release().

Remember that applications can exert these system calls indirectly; for instance by using the standard
1/O lLibrary functions, fopen(), fclose(), fread(d, fwrite(), and fzeek().

.4.5. REGISTERING THE DEVICE

Accessing Device Nodes

Figure 4.1: Accessing device nodes

4.5 Registering the Device

So far all we have done is rescrve a range ol device numbers for the exclusive use of our driver. More
work has to be done before the device can be used.

Ch aCt 1 de\ﬂc v e asso(lai C(l W 1! h_ a cdev sgtr (5] e I .
ai e o5 Al llCtlu‘e as d I]n
/ / 4 in /usr/SrL/llnux/lnCiude

struct cdev {
struct kobject kobj;
struct module *owner;
struct file operations *ops;
struct list_head list;
dev_t dev;
unsigned int count;

I

N?r‘ma,lly you won't worl'{ directly with the internals of this structure, but reach it through various
utility functions. In particular we'll see how the owner and ops pointers are used.

A number of related functions which are needed to work with character devices are:

#include <linux/cdev.h>

41

42 CHAPTER 4. CHARACTER DEVICES

struct cdev *cdev _alloc {(wvoid);

void cdev_init (struct cdev #p, struct file_operations #fops);
void cdev_put (struct cdev *p};

struct kobject *cdev_get (struct cdev #*p);

int cdev_add (struct cdev #p, dev_t first, unsigned count);
void cdev_del (struct cdev #p);

‘I'hese structures should always be allocated dynamically, and then initialized with code like:

struct cdev *mycdev = cdev_alloc ();
cdev_init (mycdev, &fops);

This code allocates memory for the structure, initializes it, and sets the ouner and ops fields to point
to the curreni module, and the proper file_operations table.

The driver will go live when one calls:
cdev_add {(mycdev, first, count);

"I'his function should not be called until the driver is ready to handle anything that comes its way.
The inverse function is

cdev_del (mycdev)

and after this is called the device is removed from the system and the cdev structure should never
be accessed after this point.

4.6 udev and HAL

The methods of managing device nodes became clumsy and difficult as Linux evolved. The number
of device nodes lying in /dev and its subdirectories reached numbers in the 15,000 - 20,000 range in
most installations during the 2.4 kernel series. Nodes for all kinds of devices which would never be
used on most installations were still created by default, as distributors could never be sure exactly
which hardware would be needed.

Of course many developers and system administrators trimmed the list to what was actually needed,
especially in embedded configurations, but this was essentially a manual and potentially errcr-prone
task.

Note that while device nodes are not normal files and don’t take up significant space on the filesystem,
having huge directories slowed down access to device nodes, especially upon first usage. l'urthermore,
exhaustion of available major and minor numbers required a more modern and dynamic approach to
the creation and maintenance of device nodes.

Ideally, one would like to register devices by name, However, major and minor numbers can not be
gotten rid of altogether, as Posix requires them.

The udev method creates device nodes an the fly as they are needed. There is no need to maintain
a ton of device nodes that will never be used. The u in udev stands for user, and indicates that
most of the work of creating, removing, and modifying devices nodes is done in user-space.

46. UDEV AND HAL 43

udev handles the dynamical generation of device nodes but it does not handle the discovery or
managcmf-:nt of them. This requires the Hardware Abstraction Layer, or HAL, which is a
project of freedesktop.org (http:/ /www.freedesktop.org/wiki/Software /hal).

HATL uses the D-BUS (device bus) infrastructure, as provided by the HAL daemon (haldaemon).
It maintains a dynamic database of all connected hardware devices and is closely coupled to the
hotplug facility. The command 1shal will dump out all the information thai HAL currently has
in its database. "There are a number of configuration files on the system (in /usr/share/hal and
/ete/hal) which control behaviour and set exceptions.

The cleanesl way to use udev is to have a pure system; the /dev directory is empty upon the initial
kernel boot, and then is populated with device nodes as they are nceded. When used this way, one
must boot using an initrd or initramfs image, which may contain a set of preliminary device nodes
as well as the udev program itsclf.

As devices are added or removed from tLhe system, working with the hotplug subsystem, udev acls
upon notification of events to create and remove device nodes. The information necessary to create
them with the right names, major and minor numbers, permissions, etc, are gathered by examination
of information already registered in the sysfs pseudo-filesystem (mounted at / gys) and a set of
configuration files,

The main configuration file is /etc/udev/udev.conf. It contains information such as where to place
device nodes, defaull permissions and ownership etc. By default rules for device naming are located

in the etc/udev/rules.d directory. By reading the man page for udev one can get a lot of specific
information about how to set up rules for common situations.

Creation and removal of a device node dynamically, from within the driver using udev, is done by
the use of the following functions defined in /usr/src/linux/include/linux/device.h:

#inciude <limux/device.h>

struct class *class_create (struct module *owner, const char *name);

struct device #device_create (struct class *cls, struct device *parent, dev_t devt,
‘const char #*fmt, ...);

void device_destroy (struct class *cls, dev_t dev):

void class_destroy {struct class *clé);

Generally, the parent is NULL which means the class is created at the top level of the hierarchy., A
code [ragment serves to show the use of these functions:

static struct class *foo_class:

AN
/* create node in the init function (74
foo_class = class_create (THIS_MODULE, "my_class");
device_create (foo_class, NULL, first, "¥s¥d", "mycdrv", 1);
/* remove mode in the exit functiom */
device_destroy (foo_class,first);
class_destroy (foo_class);

One has to be carcful to do whatever is necessary 16 make the device usable before the device nade
ig created, to avoid race conditions.

44

CHAPTER 4. CHARACTER DEVICES

4.7 file_operations Structure

‘The file_operations structure is defined in /usr/sre /linux/include/Timex /5.

h
o]

MNODNORNRRNRORRNND N

[S

2v]

BRI NN RN
Do oD

P N N e e R R R

SRR E
N N .

CECEVECECRVEUE U S
N N R R R L

.31:1492

,31:1493
.31:1494
.31:1496
.31:1496
.31:1497
.31:1498
.31:1499
.31:1500
.31:1501
.31:1602
.31-1503
.31:1504
.31:1605
.31:1506

.31:1607

.31:1508
.31:1509
.31:1510

.31:1511

,31:1512
.31:1513
.31:1614
.31:15156
.31:156186
.31:15617

.31:1518
.31:1519
.31:15620
.31:15621
.31:1522
.31:1523
.31:1624
.31:15256
.31:1526
.31:1527
.31:1628

i H

,31:1486 struct file_operations {
.31:1487
.31:1488
.31:1489
.31:1490
.31:1491

struct module *oWwner;

loff_t (xllseek) (struct file *, loff t, int);

gsize_t (*read) (struct file *, char __user ¥, size_t, loff_t #*);

ssize_t (*write) (struct file *, const char __uger *, size_t, loff_t #);
sgize_t (*aio_read) (struct kiocb *, comst struct iovec *, unsigned long,
loff t); .

ssize_t (*aio_write) (struct kioch *, const struct iovec *, unsigned long,
loff_t};

int (#readdir) (struct file #*, void ¥, £illdir_t);

unsigned int (*poll) (struct file *, struct poll_table_struct f);

int {(#ioctl) {(struct inode ¥, struct file #, unsigned int, unsigned long);
long (*unlocked_ioctl) (struct file *, unsigned int, u%sigued long);

long (*compat_ioctl) {struct file #, unsigned int, unsigned long);

int (*mmap) (struct file *, gtruct vm_area_struct *);

int (*open) (struct inode ¥, struct file #};

int (#flash) {(struct file #, fl owner_ t id);

int (#release) (struct inode *, struct file %)

int (*fsync) (struct file #, struct dentry #*, int datasync);

int (*aio_fsync) (struct kioch *, int datasync);

int (kfasync) (int, struct file ¥, int};

int (*lock) (struct file *, int, struct file_lock *);

ssize_t (*sendpage) (struct file *, struct page *, int, size t, loff_t *,
int); . .
unsigned long (*get_umnmapped_area) (struct file *, unsigned long, unsigned
long, unsigned long, unsigned longy;

int (#check_flags) (int);

int (#flock) (struct file *, int, struct file_lock %); _

gsize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t f,
size_t, unsigned int); _ _ -
sgirze_t (*splice_read)(struct'file %, loff_t *, struct plpe_lnode_lnfo *,
size_t, unsigned int);

int (*setlease) (struct file *, long, struct file_lock *¥);

struct inode_operations {

int (*kcreate) (struct inode ¥,struct dentry *,int, struct nameidata *)E
struct dentry * (*lookup) (struct inode *,struct dentry *, struct nameidata
*};
int (#1ink) (struct dentry *¥,struct inode %, struct dentry *);
int (*unlink) (struct inode *,struct dentry *);
int (ksymiink) (struct inode # gtruct dentry *,const char *)
int (#mkdir) (struct inode *,struct dentry *,int);
int (#rmdir) (struct inode ¥,struct dentry *);
int (kmkmod) (struct inode *,struct dentry *,int,dev_t);
int {#rename) (struct inode *, struct dentry *,
gtruct inode *, struct dentry %}
int (*readlink) (struct demtry ¥, char __user *,int);
void # (xfollow_link) (struct dentry *, struct nameidata #);
void (kput_link) {struct dentry ¥, atruct mameidata *, void *);

h, and looks like:

4.7, FILE_OPERATIONS STRUCTURE

.6.31:1529
.6.31:1630
.6.31:15631
.6.31:1532
.6.31:1533
.6.31:1634
.6.31:1535
.6.31:1536
2,6.31:1537
2.6.31:1638
2.6.31:1639
2.6.31:1540
2.6.31:1541

2
2
2
2
2
2

2
2

2.6.31:1642 };

void (¥truncate) (struct inode #};
int (*permission) (struct inode *, int);
int (*setattr) (struct demtry *, struct iattr #);
int (¥*getattr) (struct vfsmount *mnt, struct dentry *, struct kstat *);
int (*setxattr) (struct dentry %, comst char *,const void *,size_t,int);
ssize_t (#getxattr) (struct dentry *, const char *, void *, size_t);
ssize_t (*listxatir) {struct dentry *, char *, size_t);
int (*removexattr) (struct dentry #, const char *);
void (#truncate_range)(struct inode *, loff_t, loff _t);
long (ffallocate)(struct inode *inode, int mode, loff_t offset,
loff t lemn);

int (*fiemap) (struct inode *, struct fiemap_extent_info *, u6d start,
u64 len);

45

and is a jump table of driver entry points, with the exception of the first field, owner, which is
used for module reference counting.

This structure is used for purposes other than character drivers, such as with fileaystems, and so some

of the eniries won’t be used in this arena. The same is true with the file and inode slructures to
be discussed shortly,

The file operations structure is initialized with code like:

struct file_operations fops = {

- oWwner

.open

.release =

.read
Write
Ldoctl

};

1l

THIS_MODULE,
= my_open,
my_close,

= my_read,

= my_write,

= my_ioctl,

According to the C99 language standard, the order in which fields are initialized is irrelevant, and
any unspecified elements are NULI-cd.

These operations are associaled with the device with the cdev_init () function, which places a pointer
to the file_operations structure in the proper cdev siructure. Whenever a corresponding system
call is made on a device node owned by the device, the work is passed through to the driver; e.g., a
call to open on the device node causes the my_open{) method to be called in the above example.

¢ If no method is supplied in the file_operations structure, there are two possibilities
for what will occur if the method is invoked through a system call:

— The method will fail: An example is mmap ().

— A peneric default method will be invoked: An example is 11seek(). Sometimes
this means the method will always succced: Examples are open() and release().

46 CHAPTER 4. CHARACTER DEVICES

4.8 Driver Entry Points

struct module *owner;

The only field in the structure that is not a method. Points to the module that owns the structure
and is uged in reference counting and avoiding race conditions such as removing the module while
the driver is being used. Usually sel to the value THIS_MODULE.

Joff_t (*llseek) (struct file #filp, loff_t offset, int whence) ;

changes the current read/write position in a file, returning the new position. Note that Loff_t is
84-bit cven on 32-bit architectures.

If one wants to inhibit secking on the device (as on a pipe), one can unsct the FMODE_LSEEK bit in
file file structure (probably during the open() method) ag in:

file—->f_mode = file->f_mode & ~FMODE_LSEEE;

ssize_t (#read) (struct file *filp, char __user ¥puff, size_t size, loff_t xoffset};

reads data from the device, returning the number of bytes read. An error is a negative value; zero
may mean end of device and is not an error. You may also choose to block if data is not yet ready

and the process hasn’t set the non-blocking flag.

A simple read() entry point might look like:

static ssize_t mycdrv_read (struct file *file, char __user *buf, size_t lbuf, loff t * ppos)

{
int nbytes = lbuf - copy_to_user (buf, kbuf + *ppos, lbuf);

¥ppos += nbytes;
printk (KERN_INFO "\n READING function, nhytes=Y%d, pos=Ad\n”", nbytes, {int) *ppos);
return nbytes; ’

In this simple case a read merely copies {rom a buffer in kernel-space (kbuf) to a buffer in user-space
(buf.) But one can not use memcpy() to perform this because it is improper Lo de-reference user
pointers in kernel-space; the address referred to may not point to a valid page of memory at the
current time, either because it hasn’t been allocated yet or it has been swapped out.

Instead one must use the copy_to_user () and copy_from_user () functions (depending on direction)
which take care of these problems. (We'll see later there are more advanced techniques for avoiding

the extra copy, including memory mapping, raw 1/0, etc.)

The kernel buffer will probably be dynamically allocated, since the in-kernel per-task stack is very
litnited. This might be done with:

#include <linux/slab.h>
char *kbuf = kmalloc (kbuf_size, GFP_KERNEL);

kiree (kbuf);

where the limit is 1024 pages (4 MB on x86).

4.8. DRIVER ENTRY POINTS 47

‘If usm;g t}klle GFP_KE_IPtNEL flag, memory allocation may block until resources are available; if GFP_ATOMIC
is used the request is non blocking, We will discuss memory allocation in detail later B

T};e pq;:}tl'lon in the dev%ce is updated by modilying the value of #ppos which peints to the current
value. The return value is the number of bytes successfully read; this is a case where a positi
value is still success. ? o postive retuen

SSiZe t (*erte) (Sl;ruCt file *fllp consgt char uger *b
. .
) ; H uff’ size_t 81Ze,

writes data to the device, returning the number of bytes written. An error is a negative value; zero
1

may mean end of device and is not, an error. You ma i
: . y also choose to block if the ice i ’
ready and the process hasn’t set the non-blocking flag. ock 1 the device is not yol

The same considerations apply about not directly using user-space pointers. Here one should use
int nbytes = lbuf - copy_from_user (kbuf + #*ppos, buf, lbuf);

for the same reason
int (*readdir) (struct file *filp, void *, filldir_t filldir);
—_ ’

should be NULL for device nodes; used only for di i i
: ; y for directories, and is used b sysh i i
use the same file_operations structure, , y Hlesysten drivers, whis

unsigned int (*poll) (struct file *filp, struct poll_table_struct #ptab);

C}%(-l);liz t9 see if a device is readable, writable, or in some special state. In user-space this is accessed
with both the pol1() and select () calls. Returns a bit mask describing device status. l

int (*ioctl) (struct inode *inode, struct file *filp, unsigned int unsigned long);

i the inter'face for issuing device-specific commands. Note that some ioctl commands are not
device-specific and are intercepted by the kernel without referencing your entry point. ’

long (*unlocked ioctl) (struct file #filp, unsigned int, unsigned long);
?]

UL}li.jke the normal ioctl() ent‘ry point, the big kernel lock is not taken before and released after
calling. New code should use this enlry point; il present the old one will be ignored.

int (#mmap} (struct file *filp, struct vm_area_struct *vm);
e H

requests a mapping of device memory to a ! i
process’s memory, If ’ i
the system call will return -ENGDEV. - fhyou dout imploment this method,

int (*open) (struct inode *inode, struct file *£ilp);
opens a device. If set to NULL opening the device always i
> S is i
ey ot shoni s succeeds, but the driver is not notified. The
¢ Check for hardware problems fike the device not being ready.
e Initialize the device if it is the first time it is being opened.
s If required, note the minor number.

* Set up any data structure being used in private_data field of the file dala structure

48 CHAPTER 4. CHARACTER DEVICES

int (*flush) (struct file *filp);

is used when a driver closes its copy of a file descriptor for a device. It executes and wails for any
ontstanding operations on a device. Rarely used. Using NULL is sa,fg.

int (*release) (stfuct inode *incde, struct file *£ilp);

closes the node. Note when a process terminates all open file descriplors are closed, even un;ilqlar
abnormal exit, so this entry may be called implicitly. The release() method should reversc the
operations of open(}:

e Free any resources allocated by open.

e Tf it is the last usage of the device, take any shutdown steps that might be necessary.

int (#fsync) (struct file *filp, struct demtry *dentry, int datasync);
is used to flush any pending data.
int (*fasync) (int, struct file *filp, int);

checks the devices FASYNG flag, for asynchronous notification. Use NULL unless your driver supports
asynchronous notification.

int (#lock) (struct file #filp, int, struct file_ lock *1ock) ;
is used to implement file locking; generally not used by device drivers, only files.

ssize t (*aio_read) (struct kiocb *ioch, comst struct iovec *iov, unsigned long niov,
loff_t pos);

ggize t (*aio_write) (struct kiocb *iocb, const struct lovec *iov, unsigned long niov,
loff_t pos);

int (*aio_fsync) (struct kiocb *, int datasync);

These implement asynchronous methods for 1/0. If not supplied, the kernel will always use the
corresponding synchronous methods.

ssize © (*sendfile) (struct file *filp, loff_t *offset, size_t, read_actor_t, void *);

Implements copying from one file descriptor to another without separate read an_d write operations,
ninimizing copying and the number of system calls made. Used only when copying a. file through a
socket. Unused by device drivers.

ssize t (*sendpage) (struct file *filp, struct page *, int, size_t, lotf_t *offset, int)

Inverse of sendfile(); used to send data (a page at a time) to a file. Unused by device drivers.

unsigued long (*get_unmapped_area) (struct file *filp, unsigned long, unsigned long,
unsigned loug, unsigned long);

Find an address region in the process’s address spacc that can be used to map in a memory segment
from the device. Not normally used in device drivers.

int (*check_flags) (int);

A method for parsing the llags sent to a driver through fent1().

4.9. THE FILE AND INODE STRUCTURES 49

int (kdir_notify} (struct file *filp, unsigned long arg);
Invoked when fent1 () is called to request directory change notifications. Not used in device drivers.
int (*flock) (struct file *, int, struct file_lock *); 7

Used for file locking; Not used in device drivers.

4.9 The file and inode Structures

The file and inode data structures are defined in /usr/src/linux/include/linux/fs.h. Both are
important in conlrolling both device nodes and normal fileg,

The file structure has nothing to do with the FILE data structure used in the standard C library;
it never appears in user-space programs.

A new file structure is created whenever the open() call is invoked on the device, and gels passed to
all functions that use the device node. This means there can be multiple file structures associated

with a device simultaneonsly, as most devices permit multiple opens. ‘T'he structure is released and
the memory associated with it is freed during the release() call.

Some important structure members:

Table 4.5: file structure elements

I'ield Meaning

; struct path Gives information about the file directory entry, including a pointer to
f_path the inode.
const struct Operations associated with the file. Can be changed when the method
file_operations is invoked again.
f_op

f_mode_t f_mode Identified by the bits FMODE_READ and FMODE_WRITE. Note the kernel
checks permissions before invoking the driver.

loff t f_pos Current position in the file; a 64-bit value. While the final argument
to the read(} and write(} entry points usually points to this, the
1lseek(} entry should update f_pos, but the read() and write()
entry points should update the argument. (Use of £_pos for this pur-
pose is incorrect because the pread(), pwrite() system calls use the
same read and write methods but do not have this linkage.)

unsigned int (_RDONLY, O_NONBLOCK, O_SYNC, etc. Needs to be checked lor non-
f_flags blocking operations.

50 CIHAPTER 4. CHARACTER DEVICES

vold * Can be used to point to allocated data. Can be used to preserve state
private_data information across system calls. The pointer to this is set to NULL
before the open() call, so your driver can use this to point to whalever
it wants, such as an allocated data structure. In this cage you must
remember to frec the memory upon release(). Note there will be a
unigue instance of this structure for each time your device is opened.

ctures lies inside the structure. To obtain a pointer

Note that a pointer to the file_operations sbru
_path element which is a structure of type:

to Lhe inode structure you have to descend through the £

struct path {
struct vEsmount *mnt;
struct dentry *dentry;

Y

with the inode field contained in the dentry structure. So yow'll often see references like:

struct file *I;
f“>f_path.dentry—>d_in0de

or using a backwards compatible macro as:
f->f_dentry—->d_inode

but this macro is slated for removal.

de structure pointing to a given device node;

Unlike the file structure, there will only be one ino
ntation) on the device node

each open descriptor (and corresponding internal file structure represe
will in turn to point to that same inode structure.

While the inode structure contains all sorts of information about the file it points to, here it happens
1o be a device node, and very few of the fields are of jnterest for character drivers. Two of importance

are:

Table 4.6: inode structure elements

Field Meaning

Coontains the actual device number from with the major and minor

dev_t i_rdev
numbers can be extracted.

dev_t i_cdev Points back to the basic character driver structure.

L

4.10. MODULE USAGE COUNT 51

4.10 Module Usage Count

rqu‘l;l‘mfmel needg to keep track of h.ow many times a module is being referenced by user-space processes
(This is nmrelated to how many times the module is being used by other modules] Tt ig impo: 'bll
{0 remove a module with a non-zero reference count. . PO

%nce upon a time modules were expected to do most of the bookkeeping on their own, incrementing
:cl ; ; usage count When.e\'fer a module was used by a process, and decrementing it when it was done
is procedure was dilficult to accomplish without incurring errors and race conditions .

As an 1mpr‘ovemf>nt, module usage is now kept track of by higher levels of the kernel rather th.

manually. FFor this to work one needs to set the owner field in the appropriate data structure f L?ln
tyI')e of module being considered. For instance for a character device driver or a filesyst dorr ;
this would be the file_operations structure. One can set this through: e e

static const struct file operations fops = {
.owner= THIS MODULE,
.open= my_open,

Now the kernel will take care of the bookkeeping automatically.

Other examples of such structures containin i
. g tables of callback funct i i
fields include block_device_operations and fb_ops. 101 OF GULLY POnts, with owmer

If there is a need to manually modify a module’s usage count (to prevent unloading while the module

is being used) one can use the functions:

int try_module_get (struct module *module);
void module_put (struct module *module);

No]tc aflhzt a call .h'ke try_.module_get (THIS_MODULE) can fail if the module is in the process of being
unloaded, in which case it 'returns 0; otherwise i returns 1. These functions are defined to have no
effect when module unloading is not allowed as a kernel option during configuration ‘

The reference commt ifself is embedded in { .
function embe: in the module data structure and can be obtained with the

unsigned int module_refcount (struct module #*mod);
and would usnally be invoked as something like:

printk (KERN_INFO "Reference count= %d\n", module_refconnt (THIS_MODULE)) :

52 CHAPITR 4. CHARACTER DEVICES

4.11 Labs

Lab 1: Improving the Basic Character Driver

Starting from sample_driver.c, extend it to:
o Keep track of the number of times it has been opened since loading, and print out the counter
every time the device is opened.
e Print the major and minor numbers when the device is opened.
To exercige your driver, wrile a program to read (and/or write) from the node, using the standard
Unix 1/0 functions (open(), read(), write(), close()).
After loading the module with insmod use this program 1o access the node.

Track usage of the module by using lsmod (which is equivalent to typing cat / proc/modules.)

Lab 2: Private Data for Each Open

Modify the previous driver so that each opening of the device allocates its own data arca, which is
freed upon release. Thus data will not be persistent across multiple opens.

Lab 3: Seeking and the End of the Device.

Adapt one of the previons drivers to have the read and write entries watch out for going off the end
of the device.

Tmplement a 1seek () entry point. See the man page for 1seek() to see how return values and error
codes should be specified.

Toor an extra exercise, unset the FMODE_LSEEK hit to make any attempi to seek resull in an error.

Lab 4: Dynamical Node Creation (1)

Adapt one of the previous drivers to allocate the device major number dynamically.

Write loading and unloading scripts that ascertain the major number assigned and make and remove
the node as required.

Lab 5: Dynamical Node Creation (11)

Adapt the previous dynamic registration driver to use udev to create the device node on the fly.

Chapter 5

Kernel Configuration and
Compilation

We'll examine the layout of the Linux)
. ; he lay kernel source. We'll consid
_zue’ghogs of browsing tho'source. We'll also give the procedures for configuring, compilin lslari;
installing updated or modified kernels. Finally we'll consider the use of initrd ima,;;ec; ®

5.1 Imstallation and Layout of the Kernel Source

5.2 Kernel Browsers « « o o oo v oo e
5.3 Kernel Configuration Files o
5.4 Rolling Your Own Kernel .+ o
5.5 initrd and inftramfs oL L. w0
5.6 Labs 3(3)

5.1 Imnstallation and Layout of the Kernel Source

’Iige siurce for t}}e Linux kernel must be made casily available by all distributors. Both the newest and
older | ernel versions are generally available for download. (Remember that finger @www.kernel
will give a quick enumeration of the most recent kernel versions.) | . e

R

54 CHAPTER 5. KERNEL CONFIGURATION AND COMPH.ATION

The pristine source for all kernel versions can always be obtained from directly from the kernel
maintainers at http://www.kernel.org, or from the distributors, most of whom make (possibly
quite extensive) changes to the source. These changes must also be [reely available, .

stern is neither mandated nor important. When external

The exact location of the source is on your sy
-1} /build either

modules have to be built against the source, the directory / 1ib/modules/$ (uname
contains the actual source, or is a symbolic link pointing to it.

For convenience, we'll often pretend the kernel source resides at /usr/src/linux, and for the purpose
create a symbolic link from there to the real code. This should not be construed

of displaying code,
as a recommendation to do this on normal development systems. Under /usr/src/linux (or the real

location) we find:

5.1. INSTALLATION AND LAYOUT OF THE KERNEL SOURCE

Here is a count of lines in the source code for the most recent vanills, kerncl. (For each directory all

subdirectories are included.)

Table 5.1: Layout of the kernel source

Directory Purpose
arch 1386, ia64, alpha, arm, sparc, gparc64, mips, mips6d,
m68k, ppc, s390... Architecture specific code for boot, synchro-
nization. memory and process management.
kernel Generic main kernel routines.
mm Ceneric memory management code. swapping, mmaping, kernel mal-
loc, ete.
init Generic kernel start-up code.
drivers char, block, net, scsi, fs, cdrom, pci ... Device drivers
sorted by type.
sound ALSA (Advanced Linux Sound Architecture), including sound card
drivers.
block Tow-level infrastructure for the block device layer. Specific block device
drivers are under drivers/block.
fs Filesystems, with subdirectories for each type.
net Fthernet, ip, decnet, ipx, ipv4, ipv6, appletalk and other network code.
security Security models, including SELinux.
crypto Cryptographic algorithms.
1ib Some standard library routines, mostly for sbrings.
ipc System V Inter-Process Communications code.
usr User-space interaction; so far only intramfs code.
scripts Various scripts used to compile and package kernels.
Documentation Varions documentation resources; sometimes not up to date.
virt Virtualization infrastructure.
firmware Firmware that is packaged with kernel.
samples Sample kerncl code used for tracing, profiling and debugging purposes.
tools User-space tools, used for performance counting,.
| include System header files.

Directory .8 files ‘b files .c files TOTAL
A . 310430 1992776 8461916 10765122
 /drivers 1776 801738 5014569 5818083
.farch 306894 654445 1192799 2153138
./fs 0 F2900 8214686 894366
./net G 16967 B60563 5765630
_/éound 218 38800 484524 523542
./include 0 385398 0 385398
./kernel 0 2773 140979 143762
. /mm ‘ 0 266 62889 63155
./security 0 4721 41171 45892
./c?ypto 0 9814 33396 43210
./11b. 0 817 31656 32473
./scripts 0 2838 22263 26101
./block 0 167 16405 16572
.ftools 0 15656 13772 16337
,/Pocumentation 4 0 9155 9155
./1?c 0 177 7320 7497
./?1?t 0 164 4103 42867
./1?1t 0 76 2994 3070
ffirmware 2425 0 268 2693
./samples 0 150 1032 1182
.fusT 117 0 592 709

Most of. the lil‘ms of code are f(.)r drivers, either for peripherals or different types of filesystems. A fair
cmcxilpinson.wlth other operaling systems should observer that the sources for the X-window system
and the various Desktops, etc., are not included. However, we have included all architectures "

Here is how the total number of lines has changed with recent, kernel versions:

Kernel Version TOTAL LINES

2.6.18 7082952
2.6.19 7308043
2.6.20 7400843
2.6.21 7522286
2.6.22 7744727
2.6.23 7818168
2.6.24 8082358
2.6.25 8395801
2.6.26 " 8535933
2.6.27 8690888
2.6.28 9128690
2.6.29 9871260
2.6.30 10419567
2.6.31 10765122

56 CHAPTER 5. KERNEL CONFIGURATION AND COMPILATION
5.2 Kernel Browsers

One often has to browse the kernel source in order to understand the inner workings of the kernel,
compare kernel versions ele. Often the best tools for doing so are the simple text utilities such as
grep and find.

One modern tool is the Linux Cross Reference Browser {Ixr) which can be accessed af
http://Ixr.Jinux.no. This website contains browseable source code repositorics for virtually ev-
ery linux kernel ever produced, as well as source code and instructions for a local installation of
bxr.

The master Ixr repository uses version 0.9.4 of the browser, which while very robust is relatively slow
and more difficult to install compared to older versions. A sample installation of the simpler version
0.3.1 can be found at http://users.sosdg.org/ giyong/lxr/source

Local use of Ixr requires running a web server (Lypically apache) and several hundred MB of disk
space per kernel being indexed.

A purely text-based browser is offered by the cscope utility, which is a standard offering on most
Linux systems. To use on the kernel sources one need merely run make cscope in the kernel source
directory, creating the various index files needed, and then simply run cscope in the main kernel
source directory. From then on the use is interactive and intuitive.

Another approach is afforded by the use of GNU Global, which can be obtained from
http://www.gnu.org/software/global. Many distributions offer this as a package. Once global
is installed one need go only to the kernel source directory and do gtags ; htags, wail until the
cross-indexing is donc and then navigate the results using your favorite browser, simply by pointing
to /usr/src/linux/HTML/index.html. One disadvantage of global is its use of over 2 GB of disk
space per kernel. : .

All these methods will work, and there are some others such as just doing make tags and using the
generic tags files that can be used by emacs and vi experts. For what it’s worth, we confess to having
a preference for Ixr (older versions) because of the easy comparison of different kernel versions.

5.3 Kernel Configuration Files

Kernels provided by Linux distributors nsually differ from those whose sources are directly obtained
from the official “vanilla” kernel repository at http://www.kernel.org. Patches, sometimes quite
extensive, have been made to the kernel source, including the addition of new features and device
drivers that have not yet made it into the “official” kernel tree, as well as bug fixes and security
enhancements.

The default configuration for the vanilla sources has only a few kinds of hardwarc turned on (such as
one network card) as well as various subsystems turned off, with the actual default choices probably
reflecting the actual hardware Linus Torvalds has {or had at onc point), such as his choice of sound
card, network driver etc.

When you configure the kernel you produce a configuration file, .config, in the main kernel source
directory. If configured to do so, the contents of the .config file can be stored right inside the
kernel. If the CORFIG_IKCONFIG_PROC option is turned on, information can be read out directly from
/proc/config.gz.

54. ROLLING YOUR OWN KERNEL 57

Ru‘nnjn.g the scripts/extract—ikconfig utility on a kerncl image {compressed or uncompressed)
built with CONFIG_IKCONFIG turned on, causes a dump of the configuration file. (Beware, this utility
needs to be ran from the main kernel source directory, or requires some minor modifications to work.)

If you don’t have the full kernel source install, you can still find your .config file in the directory
/lib/modules/$(uname -r)/build/, as well as find an additional copy in the /boot directory.

In th(.ase configurations, drivers for almost all conceivable hardware are compiled as kernel modules.
This is the correct thing to do because one cannot know in advance precisely what hardware the end
user will have, so all possibilities must be prepared for,

On the other hand, by configuring only the hardware actually present the kernel compilation can be

sped up considerably. In addition, the configuration process goes much [(aster as you only have to
turn on what you nced. '

5.4 Rolling Your Own Kernel

For purposes (.)f experimentation you may want to try using another kernel, in particular you may
want to compile and install a vanilla kernel from http://www.kernel.org. In order to to do this
you need two files:

o The compressed kernel source (e.g., 1inux-2.6.31. tar.bz2)

s A configuration file (e.g., config-2.6.31_x86_64)

The first of these files can be obtained from http://www.kernel.org, and the second can be obtained
from http://www.coopj.com/LDD

The fo]lovﬁng scripl; (D'D_KERNEL. sh), included in your solutions, can take care of all necessary sbeps
of unpacking, configuring, compiling, and installing. To do everything just type

$ DO_KERNEL.sh 2.6.31 linux-2.6.31.tar.bz2 config-2.6.31_x86_64

If the ker?lel source has already been unpacked and configured, just go to the kernel source directory
and running the script with no arguments will take care of compilation and installation.

#1/bin/bash

Script to compile and install the Linux kernel and modules.
written by Jerry Cooperstein (2002-2009)
Copyright GPL blah blah blah

function get_SGURCE(){
KERNEL=$1
TARFILE=$2
CONFIGFILE=$3
LKV=1inux-$KERNEL
KCONFIG=$LKV/.config
[! -f "$TARFILE"] && echo no "$TARFILE, aborting" &% exit
[! -f "$CONFIGFILE"] &% echo no "$CONFIGFILE, aborting" && exit

b8 CHAPTER 5. KERNEL CONFIGURATION AND COMPILATION

echo —e "\nbuilding: Linux $KERNEL kernel from $TARFILE
Using: $CONFICFILE as the configuration file\n”
set —x
Decompress kernel, assumed in bz2 form
tar jxf $TARFILE
Copy over the .config file
cp $CONFIGFILE $KCONFIG
Change to the main source directory
cd $LEV
set +x

}

determine which distribution we are on
function get SYSTEM(){
["$SYSTEM" != ""] && return
SYSTEM= ‘
["${grep —-i Red\ Hat /proc/version}" !=
{ "${grep -1 Ubunin /proc/version)” !=
["$(grep -1 debian /proc/version)" !=
["$(grep —i suse /proc/version}" !=
["8{grep -i gentoo /proc/versiom)” !=

nit

&% SYSTEM=REDHAT && return
&& SYSTEM=UBUNTU && return
&& SYSTEM=DEBIAN &k return
&% SYSTEM=SUSE && return
&% SYSTEM=GENTOO && return

it

[W N oy Ry W)

4

find out what kernel version this is
function get_KERNELVERSION(O{
for FIFLD in VERSION PATCHLEVEL SUBLEVEL EXTRAVERSION ; do
eval $(sed -ne "/ $VIELD/s/ //gp" Makefile)
done
is there a local versiocn file?
[-f ./localversion—tip] &k AY
FXTRAVERSION="$EXTRAVERSIONS (cat localversion—tip)"
KERNEL=$VERSIDN.$PATCHLEVEL.$SUBLEVEL$EXTRAVERSIDN

}

determine where to place vmlinuz, System.map, initrd image, config file
function get_BOOT (3

if ["$BOOT" == "* ; then
PLAT=% (uname -i)
BOOT=/boot
["$PLATY == "i386" 1 k& [—a /boot/32 1 && BOOT=/boot/32
["$PLAT" == "xB6_64" 1 & [-4 /boot/64] && BOOT=/boot/64
fi

}

parallelize, speed up for multiple CPU's
function get MAKE(}{
NCPUS=${grep “processor /proc/cpuinfo | we -1}
MAKE="make —j ${($NCPUS * 23)"
T

4 if it is a NVIDIA’able kermel, compile nvidia.ko
function dealwith_NVIDIAQ{
["$(ismod | grep nvidia)" 1 && \
["$(which —-skip-alias dealwith nvidia)" 1 && \
dealwith_nvidia $KERNEL

54. ROLLING YOUR OWN KERNTY,

1

function makeinitrd REDHAT(){
Construct mkinitrd image
RHEL5.3 2.6.18 kernels mucked this up

if ["$(grep CONFIG_MD_RATDAS ./.config)" 1= "] \
IT ["$(grep without-dmraid /sbin/mkinitrd)" == ""] . then
mkinitrd -v -f $BOOT/initrd-$KERNEL . img $KFRNEL
else

N mkinitrd —v -f —-without—duraid $BO0T/initrd-$KFRNEL.img $KERNEL
i
Update /boot/grub/grub.conf
cp /boot/grub/grub.cont /boot/grub/grub, conf . BACKUP
grubby -—copy-default \
——remove-kernel=$BO0T/vmlinuz-$KERNEL \
—add-kernel=$B00T/vmlinuz-$KERNEL \
——initrd=$BO0T/initrd-$KERNEL. img \
——title=$B00T/$KERNEL
if it is a NVIDIA’able kernel, compile nvidia.ko
dealwith_NVIDIA
}

function makeinitrd DEBIAN(){
make install

if [-f $BO0T/initrd.img—$KERNEL] ; then
update-initramfs —u -k $KERNEL
alse
update—initramfs —¢ -k $XERNEL
fi '
update-grub
}
function makeinitrd UBUNTU(){
makeinitrd DEBIAN
}
function makeinitrd_SUSE(}{
make install
}
function makeinitrd_GENTOO(){
make install
genkernel ramdisk --kerneldir=$PWD

¥

function makeinitrd (){
echo System $SYSTFM is not something I understand, can not finish

exit
}
i it T R RN
Start of the work
NARGS="§#"
["$NARGS" == "3"] &% get_SOURCE $1 $2 $3

59

60 CHAPTER 5. KERNEL CONFIGURATION AND COMPILATION

get KERNELVERSION
get_BOOT
get_SYSTEM
get_MAKE

echo building: Linux $KERNEL kernel, amnd placing in: $BOOT on a $SYSTEM system

set shell to abort on any failure and echo commands
set -e X

Do the main compilation work, kernel and modules
$MAKE

Install the medules
$MAKE modules_install

Install the compressed kernel, System.map file, config file,
cp arch/z86/boot/bzTmage $BO0T /vmlinuz—$KERNEL

cp System.map $B0OT/System . map-$KERNEL

cp -config $BO0T/ conf ig—$KERNEL

making initrd and updating grub is very distribution dependendent :
echo I am building the initrd image and modifying grub config om $SYSTEM

makeinitrd_"$SYSTEM"

We've been sloppy because one should really separate the steps ol compiling and installing. Any
user should be able to compile the kernel, while only the superuser should be able to install the keruel
and modules. Compiling as superuser exposes one to potential bugs which can screw up the system;
historically this has indeed happened on development kernels.

While the compiling step is distribution-independent the installation steps can be quite different in
two of the steps; construction of the initrd or initramfs image and its naming; and editing the grub
(or lilo) configuration file. The above script may not work properly in every conceivable circumstance,
but it should be more than adequate in common installations.

5.5 initrd and initramfs

On many if not most Linux systems certain kernel modules need to be loaded before the root
filesystem can be fully mounted. In most circumstances the modules required are those needed to
mount the proper block devices on which the filesystem resides. This has always been true for SCSI
systems, but has come to include journalling filesystems, such as ext3.

In the early days of Linux, if the necessary block drivers and filesystems were built-in to the kernel
it was unnecessary (o go through the two-phase boot procedure we are about to discuss, However,
if your system is configured to use the udev facility to generate device nodes automatically (which
most modern Linux distributions arc), the two step procedure can be less painful than avoiding it
and is customary in all major distributions.

On the other hand, for embedded devices it is rarely necessary o use udev, and a one stage boot
process is usually the most efficient procedure.

5.5. INITRD AND INI'TRAMFS 61

In kerncl versions before 2.6, the initrd (initial ram disk) method was used to solve this problem
The initial ram disk (usually built with a utility with a name like mbkinitrd) contained thei nlz:cessa;r :
driver modules, a version of insmod to load them, a copy of udev if necessary, and a simple sheﬂ
(such as nash on Red Hat-bascd systems) used to execute any other NCCESSary ,comma,nds.p ‘

In the: 2.6 k.ernel, a newer method called initramfs (initial ram filesystem) is the default. It is leaner
and differs in many technical details. Tn particular, an initramfs image can be embedded in the kernel
itself. It can also be supplied on the kernel command line with the initrd= specification. For Jth'

method to work the kernel has to be built with ram disk and initrd support. ' N

The man pages for initrc‘l and mkinitrd contain sufficient documentation to explain the details.
(Fiven though the method is now initramfs the name of the utility has not been changed.) Here we
. 3 . . . ’) V

simply note you’ll need a line in your lilo or grub configuration file pointing to the initial ram disk
)

and to prepare a new ram disk for a new kernel. For example, on R,
. E ed Hat- ’
only to do something like: - nirbased systeros you nead

mkinitrd initrd-2.6.31.img 2.6.31

Thi.s figures out exactly which files, utilities and modules you need for the first phase. The image will
be in the form of a cpio archive of a root filesystem which can be unpacked and examined with:

$ mkdir temp &% cd temp
$ gunzip -¢ ../initrd-2.6.31i.img | cpio —idv
$ 1s -1R

which gives:

total 32

drux———--- 2 coop coop 4096 Jun 2¢ 08:17 bin
drwxrwixr-x 3 coop coop 4096 Jun 29 08:17 dev
drwx—————- 2 coop coop 4098 Jun 29 08:17 etc
—rux~——— 1 coop coop 1628 Jun 29 08:17 init
dryx———--- 3 coop coop 4096 Jur 29 08:17 1ib
dryx-———— 2 coop coop 4096 Jun 29 08:17 proc
Irwxrwxrux 1 coop coop 3 Jun 29 08:17 sbin -> bin
drwx-—-———- 2 coop coop 4096 Jun 29 08:17 sys
drwx————-~ 2 coop coop 4096 Jun 29 08:17 sysroot
./bin:

total 2852

Br 7 S 1 coop coop 526400 Jun 29 08:17 insmod
lrwxrwxrwx 1 coop coop 10 Jun 29 08:17 modprobe -> /sbin/nash
STWE—————— 1 coop coop 2390592 Jun 29 08:17 nash
fdev:

total 4

dryx—————— 2 coop coop 4096 Jun 29 08:17 mapper
lrwxrwxrux 1 coop coop 4 Jun 29 08:17 ram -> raml
./dev/mapper:

total O

62 CHAPTFER 5. KERNEL CONFIGURATION AND COMPILATION

fete:
total O

flib:

total 184

-Ty—————— 1 coop coop 56288 Jun 29 08:17 ahci.ko
—p—— 1 coop coop 45944 Jun 29 08:17 ehci-hcd.ko
drux————— 2 coop coop 4096 Jun 29 08:17 firmware
—pg—————— 1 coop coop 33336 Jun 29 08:17 ohci-hed.ko
—p——————— 1 coop coop 7992 Jun 29 08:17 pata_marvell.ko
L 1 coop coop 32088 Jun 29 08:17 uhci-hcd.ke

. /lib/firmware:
total ©

./proc:
total 0

./8ys:
total O

./sysroot:
total O

A script called init (in the main directory on the image filesystem) contains the detailed startup and
load procedures.

If you wish to modify the filesystem produced by mkinitrd (perhaps you are not happy with the
order in which things get loaded), then you can do so, and re-compress the image when you are
finished. You can recreate a new image with:

find . | cpio ——quiet -c -o > ../imagenew && gzip . ./imagenew

and then renaming the compressed image appropriately.

e The above discussion is somewhat Red Hat-centric. For example, debian-based sys-
tems (including Ubuntu) use a utility called update-initramfs to both produce an
image and update the grub configuration. Gentoo syslems use genkervel ramdisk
.. for the same purpose.

e Some distributions construct only a minimal initial images, others throw in the kitchen
sink. There has been discussion of moving much of this work into the kerncl source
tree, and indeed most of the infrastructure already exists. However, distribu‘t()@ have
interests, histories, and concerns about this which may make a coherent cross-distributor -

approach be far off.

5.6. LABS 63

5.6 Labs

Lab 1: Bailding a Kernel

In this exercise you will build a Linux kernel, tailored to specific needs of hardware/soltware. You

won’t actually modify any of the source for the Linux kernel; however, you will gelect features and
decide which modules are built.

Use whatever exact file names and version numbers are appropriate for the sources yoil have, rather
than what is specified below. ’

Step 1: Obtain and install the source

Depending on your Linux distribution you may already have the source installed for your currensly
running kernel. You should be able to do this by looking at the / lib/modules/kernel-version/
directory and seeing if it has active links io build or source directories. If not you'll have to obtain
the kernel source in the method detailed by your distribution.

If you are using a vanilla source, then download it from http://www.kernel.org and then unpack
it with:

$ tar jxvf linux-2.6.31.tar.bz2

(putting in the proper Gle and kernel version of course.)

Step 2: Make sure other ingredients are up to date.

The file /usr/src/linux/Documentation/Changes highlights what versions of various system
utilities and libraries are needed to work with the current source.

Step 3: Configuring the Kernel

You can use any of the following methods:

¢ make config
A purely text-based configuration routine.
s make menuconfig
An ncurses semi-graphical configuration routine.
s malke xconfig
An X-based fully-graphical configuration routine, bascd on the gt praphical libraries.
» make gconfig

Also an X-based fully-graphical configuration routine, based on the GTK graphical libraries,
which has a somewhai different look..

64 CHAPTER 5. KERNEL CONFIGURATTON AND COMPILATION

You’'ll probably want to nse make xconfig or make geonfig, as these have the nicest interfaces.
Al amy ratbe, the content and abilities of all the methods are identical. Thcy-ail prOfiuce a file named
.éonﬁg, which contains your choices. (It is generally advised not to edit this file directly unless you

really know what you are doing!)

Tf you have an old configuration, you can specd up the process by doing:
$ make oldconfig

which takes your old configuration and asks you only about new c.h(.)if,es. If you vu.ra,nt t_o get the
default choices as they come out of kernel.org, you can obtain the initial configuration with

$ make defconfig

Also note that if you are going to a new version through applying a patch, you can use the patch-
kernel script by going to the source directory and doing:

$ scripts/patch-kernel . < patch directory >

o The ketchup utility, obtainable from http://www.selenic.com/ketchup, is very usc-
ful for going from one kernel version to another.

o ketchup will even download patches and/or full sources as they are needed, and can
check source integrity.

e For instance upgrading from 2.6.24 to 2.6.31 would involve going to the source direcltory
and just typing:

$ ketchup -G 2.6.31

L.

Take your time configuring the kernel. Read the help items to learn more about the possibilities
available. Several choices you should make (for this class) are:

e Under Processor type and features:
Pick the proper CPU (Choosing too advanced a processor make cause a boot failure.)

+ Under Loadable module support:
Turn on “Enable loadable module support.”

Turn on “Module unloading.”

¢ lUnder Block Devices:
Turn on “Loopback device support.”
Turn on “RAM disk support”
Turn on “initial RAM disk (initrd) support”

5.6. LABS 65

e Under Multi-device Support (RAID and TVM):
Turn on “Device Mapper Support”

o Under Instrumentation Support:
Turn on “Profiling Support” and “Oprofile”
Turn on “Kprobes”

o Under Kernel Hacking:
Turn on “Magic SysRq key”.

Turn on “Debug Filesystem”.

Make sure you turn on drivers lor yonr actual hardware; i.e., support for the proper network card
and if you have a SCSI system the proper disk controller, and your particular sound card.

You can short circuit this whole procedure by obtaining a .config file that should work for most
common hardware from http:/www.coopj.com/LDD with a name like config-2.6.31 _x86_64.

In this template we turn on the most common network cards etc and pick the options that will provide
kernels that can handle the excrcises we provide.

For detailed guidance on configuring kernels an invaluable resource is Linuz Kernel in a Nutshell,
by Greg Kroah-Harlman, pub. O'Reilly, 2006, the full text of which is available at
http://www.kroah.com/lkn/.

In order to compile modules against your kernel source you need more than Jjust a proper . config file.
Short of mmmning a compilation first, doing make prepare or make oldcongf ig will take care of doing
the setup for external module compilation, such as making symbolic links to the right architecture.

Step 4: Configure your boot loader (grub or lilo)

Before you can reboot, you'll need to reconfigure your boot loader to support the new kernel choice.
Use either grub or lilo; you can’t use both as they wipe each other out.

If you are using grub, you'll need to add a section to the configuration file {either /boot/grub
/grub.conf or /boot/grub/menu.lst depending on your distribution) like:

title Linux (2.6.31)

root (hd0,0)

kernel /vmlinuz-2.6.31 ro root=LABEL=/
initrd /initrd—2.6.31.img

which says the kernel itself is the first partition on the first hard disk (probably mounted as /boot)

and the root filesystem will be found on partition with the label /. (Adjust partitions and labels as
needed.)

Step 5: Compiling and installing the new kernel.

This involves:

66 CHAPTER 5. KERNEL CONFIGURATION AND COMPILATION

Making the compressed kernel (bzlmage) and copying it over to the /boot directory with a
good name. (On non-x86 architectures, the kernel may be uncompressed.)

Copying over the System.map filc which is used to resolve kernel addresses mostly for logging
and debugging purposes.

L]

e Making modules and installing them under /lib/modules/kernel-version /.
o Saving the kernel configuration for future reference.
o Constructing a new initrd or initramfs image and copying it to the /boot directory.

s Updating your grub or lile configuration.

There is a script {/sbin/installkernel) on most distributions which can t.io these steps for you, and
there is also an install target for make, but we prefer to use our own script over the canned one as
it requires fewer arguments and is less rigid. "This script is available in the solutions under the name
DO_KERNEL.sh.

Thus if you want to use the canned configuration, you can do everyihing in this manner:

$ tar jxvf <pathto>linux-2.6.31.tar.bz2)
$ cp <pathto>config-2.6.31 x86_64 linux—-2.6.31/.config
$ cd linux-2.6.31

$ <pathto>DO_KERNEL.sh

Chapter 6

Kernel Features

We'll profile the major components of the kernel, such as process and
memory management, the handling of filesystems, device management and networking. We’ll consider
the differences between user and kernel modes. We'll consider the important task structure and review

scheduling algorithms. Finally we’ll consider the differences between when the kernel is in process
conlext and when it is not.

6.1 Components of the Kernel

.......................... 67
6.2 User-Space vs. Kernel-Space 69
6.3 Bcheduling Algorithms and Task Structures 70
6.4 Process Comtext 71
6.5 Labs e e e, T2

6.1 Components of the Kernel

Process Management

e Creating and desiroying processes.

» Input and output to processes.

A7

68 CHAPTER 6. KERNEL FEATURES

" N (T (e)
Processes Memory Filesystems
| Create/Destroy] | Virtual Space | Istemetured on Unm :
Scheduie ' Allocate/Free stractored HW
BC Process Inter- Mudtiple .Types
- TripwfOntput action Process Inter-
\ 7\ _J \ _action J
Devices Networking
Control Peripherals Receive Packets - Ientify
Systems Operations and Dispatch “
Send Packets — Routing
\ and Address Resolution

Figure 6.1: Main kernel tasks

o Inter-process communication (IPC) and signals and pipes.

» Scheduling.

Memory Management
o Build up a virbual addressing space for all processes.
s Allocating and freeing up memory.

e Process interaction with memory.

Filesystems

e Build structured filesystems on top of unstructured hardware.

o Use multiple filesystem types.

o Process interaction with filesystems.

Device Management

» Systems operations map to physical devices.

o device drivers control operationé for virtually every peripheral and hardware component.

6.2. USER-SPACFE VS. KERNEL-SPACE 69

Networking
o Networking operations are not process specific; must be handled by the operating system.
o Incoming packets are asynchronous; must be collected, identified, dispatched.
e Processes must be put to sleep and wake for network data.

o 'The kernel also has to addregs routing and address resolution issues.

6.2 User-Space vs. Kernel-Space

Execution modes

user mode

Applications and daemons execute with limited privileges. (Ring 3 on x86.) This is true even if the
application has root privileges.

kernel mode

Kernel has direct, privileged access to hardware and memory. (Ring 0 on x86.) Drivers (and
modules} have kernel privileges.

System Call

Return

Figure 6.2: User and kernel space

Execution is transferred from user mode (space) to kernel mode (space} through system calls (which
are implemented using synchronous interrupts, or exceptions) and hardware interrupts (or asyn-
chronous interrupts).

The mode is a state of each CPU in a multi-processor system rather than the kernel itself, as each
processor may be in a different execution mode.

e When running virtualization kerncls the hypervisor (Xen for example) runs in Ring
0, while the guest (client) kernels may run in Ring 0 or Ring 1 depending on the type of
virtualization.

o Ifit is Ring 1 a certain amount of trickery and/or emulation is required to accomplish
this.

70 CHAPTER 6. KERNEL FEATURES

6.3 Scheduling Algorithms and Task Structures

Scheduling is arguably the most important work the kernel does. The main code for this is located
in /usr/src/linux/include/linux/sched.h and Jusr/src/linux/kernel/sched.c.

Tasks constantly switeh back and forth between kernel mode and user mode (where they have lesser
privileges.) Scheduling doesn’t directly control these mode awitches, but it does have to handle the
context switching between different tasks.

Under Linux, a task by itself can not preempt a current running task and take over; il must waft
its turn for a time-slice. However, the scheduler can preempt one tagk to allow another to run.

Tasks run until one of the following occurs:

o They need to wait for some system event o complete (such as reading a file.)
« The amount of time in their time-slice expires.

e The scheduler is invoked and finds a more deserving task to run.

Additionally, the 2.6 kernel has compile-time options for a preemptible kernel; when configured this
way the kernel can behave much like a pulti-processor system, lower latency, and preempt code even
when it is in kernel mode. Thus all code which can be preempted this way must be fully re-enirant.

A task’s task_struct is the critical data structure under Linux, and contains all informagion the
kernel knows about a task, and everything it nceds to switch it in and out. Tt is sometimes called a
process descriptor. 1i is defined in /usr /sre/linux/include /linux/sched.b.

The data structure of the current task (on the current CPU) can be referred to with the current
macro; e.g., current—>tgid is the current process 1D and current->pid is the current task ID.
(These can differ; for a multiple-threaded task each thread shares the same process ID but has a
unique task (thread) ID.} This data structure contains information about signal handling, memory
areas used by the process, parent and children tasks, etc.

Within the kernel schedulable processes {or more precisely tasks, or threads) that run either in user
or kernel space are identified by pointers to & task_struct, not by a pid. For kernels earlier than
2.6.24 one can always obtain such a pointer from a pid with:

struct tagk struct *find_task_by_vpid(int pid);

(Note that in a multi-threaded process this macro will Jocate the master thread, whose process
identifier and thread identifier match.) However, later kernels do not export this macro to modules
and one can use slightly more convoluted nested macros as in:

struct task_struct %t = pid_ta.sk(find_vpid(pid),PIDTYPE_?ID);

One generally doesn’t need to obtain this information from a module and race conditions can be a
problem as pid’s can change during the lifetime of a process.

While the schedule() function may be called directly (from kernel code, not user code), it is more
likely reached through an indirect call such as: when the current lask goes to sleep and is placed

6.4. PROCESS CONTEXT
71

onto a wait queue; when a system call relurns; j
§ just before a tas 0 us
maode; or after an interrupt is handled. , sl retms (o user mode from kernel

:}V};exzhthe tshcheduler runs it determines which task should occupy the CPU, and if it is a dillerent
ask than the current one, arranges the context switch. Tt tri , . '
sk th : § . ries to keep tasks on the cP
minimize cache thrashing). When a new task is chogen { L PR
mini g shosen {0 rum, the state of the current t is g
in its task_struct and then the new task is switched in and [’nadc the current onfj et taslc e saved

The sched‘uler used before the 2.6.23 kernel was called the O(1) scheduler; the tim ired

a scl.leduhng decision was independent of the number of Tunning f,‘asks, "It wasec;eq'mred ‘3_0 o
particularly well with SMP syslems and those with many tasks. Separa;te queues ::ergne 'LO S_C"’*le
for each CPU; these queues were kept in a priority-ordered fashion, so rather than ilaving tl:?::;ii;ns(;i

search through all tasks for the right task ¢ isi
consultation. eht task to rim, the decision could be made through a quick bit-map

The 2.6.23 kernel saw replacement of the O{1) sch i i
> “heduler with i i i
the CFS {Completely Fair Scheduler) scheduler, i entirelymew algorichm, which drives

The som};letcly.fair time (is the amount of time the task has been waiting to run, divided by the
number of running tasks (with some weighting for varyi ioriti This time is

:) ying priorities.) Th it
the actual time the task has received to determine the next bask.) = He s compared with

CFS also includes hierarchical scheduler modules, each of whick can be called in turn

6.4 Process Context

When the kernel executes code it alwa ivi
. 3 vs has full kernel leges i i i
However, there are distinet contexts it can be in. priviices, and fs obviously in kemel mode,

In process context the kernel is executing code on behalf of a process. Most likely, a system call

has been invoked and cansed eniry into the ini i
has been | y into the kernel, at one of a finite number of entry points. Examples

¢ An application (or daemon) has issued a read() or write() request, either on a special device

file, such as a serial port, or on a idi i
o port, normal file residing on hardware to which the kernel has access

o A request for memory has been made fi i
o rom user-space. Once again only the kernel can handle

,!- 3 p l]] + . .
L4 user rocess nas made a s y stem Ca:] I].ke ot prlol 1 l;y to ¢ ine 3 i, i it;
id () o ﬁ] - ¢ . . - g () CXEI.}I[HIO, or Eet, ILS leOr] t; y, or

h{)n not in pl‘OC S5 Ontc}d} the I i e] .l t wor ! ‘!l [4) [
1Y < C SO T 5 NoO [y i T
i : 3 {1 g 11 b ha].f Of arn pa.rl.lcula.r USE; pI'OCCSS.

. rLhe kern;-)l 2? servic.in.g an int-.arrupt. Requests to do so arrive on an TRQ line, usnally in
esponse to data arriving or being ready to send. For example a mouse click generz;tes three or

four interrupts. It is up to the kernel t i
. E g 0 decide whal. 5 i o el .
have to wake it up to process the data. process may desire the data and it may

72 CHAPTER 6. KERNEL FEATURES

o The kerncl is executing a task which has been scheduled to run at either a specific time or when
convenient. Such a function may be queucd up through a kernel timer, a tasklet or another
kind of softirqg.

e The kernel is initializing, shutting down, or running the scheduler.

At such times the process context is not defined; although references to the current task_struct
may not yield obvious errors, they are meaningless. Sometimes this situation is called interrupt
comtext, but as we have seen it can arise even when no interrupls are involved.

The kernel context has a lighter weight than thai of a user process; swapping in and oul between
kernel threads is significantly easier and faster than it is for full weight processes.

Recent kernels make more use of so-called kernel processes, which are much like user processes but
which ate run directly by the kernel.

Such pseudo-processes are used to execute management threads, such as the ones maintaining the
buffer and page caches, which have to synchronize the contents of files on disk with memory areas.
Other examples are the ksoftirqd and kjournald threads; do ps aux and Jook at processes whose
names are surrounded by square brackets.

These processes are scheduled like normal processes and are allowed to sleep. However, they do not
have a true process context and thus can not transfer dala back and forth with user-gspace. In faci
they all share the same memory space and switching betwoen them is relatively fast.

You can examine what context you are in with the macros:

in_irg(); /% in hardware interrupt context *f
in_softirq(}; /# in software interrupt comtext (bh)*/
in_interrupt(}; /* in either hard/soft irq context ¥/
in_atomic(); /* in preemption-dizabled context */

Sleeping is disallowed if any of these macros cvaluate as true.

6.5 Labs

Lab 1: Using strace.
strace is used to trace systom calls and signals. In the simplest case you would do:
strace L[options] command [arguments]

Each system call, its arguments and return value are printed. According to the man page:
“Arguments are printed in symbolic form with o passion. »
and indeed they are. There are a lot of options; read the man page!

As an example, try

strace 1s —1RF / 2>&1 | less

6.5. LABS
73

011 nel d the Comph(,a,ted re(hl'ectlon bCCd.H [) | f ! & Y e
Y (c] 5¢ StI‘aCe 1V t ;
l,'cn t[} red]]‘oct i tO a ﬁ’e 5 15 ou pll on stderr 111’1] 58 yOou use Lh

While this is running (pansed under less) .
. . B , you can examii -nila X
examining the /proc filesystem. Do ¢ more details about; the Is process, by

ps aux | grep 1s

to find out the process ID associated with the process. Then you can lock at the pseudo-files

/proc/<pid>/fd/*

to see how the file descriptors are mapped to the underlying fles (or pipes), ete.

74

CHAPTER 6. KERNEL FEATURES

Chapter 7

Kernel Style and General
Considerations

it e,

We'll discuss what style kernel code should be written in to hetghien its

chances of inclusion in the main kernel source tree. We’ll show how to make and use a kernel patch.
We'll discuss using the sparse analysis tool. We'll consider how Linux uses a unified method to deal
with linked lists. Then we’ll consider various practices that should be followed to make code that
is portable and future-oriented, in particular with regards to using already in-place kernel methods,
word size and endianness, and making sure code works on multi-processor and high memory systems.
We'll note that security aspects should be kept in mind at all times. Finally, we’ll talk about keeping
kerne} and user-space headers separate. '

7.1 CodingStyie..................._ e e e 76
72 kernel-doc e e e e e e e e e e 77
7.3 Using Generic Kernel Routines and Methods 77
7.4 Making a Kernel Patch e e e e e e e e e e e e 78
THB SPAIBE . . v o e e e e e e e e, 9
7.6 Using likely(} and unlikely() e e e e e e e e 80
7.7 Linked Lists v i ve ... 81
7.8 Writing Portable Code - 32/64-bit, Endianness 85
7.9 Writing for SMP F e e e e 85
7.10 Writing for High Memory Systems o u.. .. 86
7.11 Keeping Security in Mind e e 86

76 CHAPTER 7. KERNEL STYLI? AND GENERAL CONSIDERATIONS

7.12 Mixing User- and Kernel-Space Headers oo v v e 86
FA3 Labs . . o v h i i e e e e e e e e e s e e e e e e e e e 87

7.1 Coding Style

The style in which kernel code is done will have a major influence on whether any patch, or dri‘ve.r,
you write makes its way into the official kernel tree. If some basic conventions are not followed, it is
likely the kernel maintainers will not even consider it.

The official document on this topic can be found in the kernel documentation, at / uslr./ src/linux
/Documentation/CodingStyle. [t contains some general precepts as well as specific rules; we
won’t try and summarize it in detail. But a few points are worth mentioning:

o Code should be rationally indented; 8 characters is the preferred value for tab stops.. {Note:
in this material we sometimes use smaller indentations because of page-width limitations.)

e The basic style can be obtained by using the script /usr/src/linux /scripts/Lindent, which
hoils down to the command:

indent -npro -kr -i8 —ts§ —sob ~180 -ss -ncs -cpl "Hen

« Namespace poltution should be avoided; global variables should have descriptive names. Mixed-
case names are discouraged; lower case with wunderscores is common; e.g., instead ol
MyCriticalVariable, use my_critical_variable. In general names should be short.

o Avoid complex functions with muliiple purposes and lots of local variables. Helper functions
should be used (and can be in-lined by the compiler if efficiency is critical.} The general rule
is: short and sweet, one facility per function.

e Avoid cute obfuscation and over-condensation. We’ve all seen compact C-code where H_lultiple
statements are packed into one line. Clarity is more important than brevity. Clear code is muc.:h
easier to maintain; remember this is open source and the number of eyeballs on your code will

be very large.

o Comments should be economical and not overdone. The main purpose should be to explain
non-obvious steps; clean code shouldn’t require many comments.

14, is possible to customize your emacs initialization files to provide much of this stylhe automat,ical.ly.
You can also run source code through the indent program, and through the incredibly large choice
of options, make it have almost any style you want.

Macros of the form:

#define my_macro{x,y}
do {
for (53094
if (x>y)
break;
schedule();

P A

}
¥ while (0}

‘7.2, KERNEL-DOC 77

- often confuse people who want to remove the do {...}while (0) construction, but they are conve-
. nient when the macro includes multiple statements.

7.2 kernel-doc

The kernel-doc format is often used in the Linux kernel to embed comments in the source. In

addition to providing a uniform standard, the kernel-doc utilitics also provide easy to use Lools for
extracting this information in convenient formats.

A simple example from /usr/src/linux/Pocumentation /kernel-doc-nano-HOWTO.txt suf-
fices to demonstrate the format that must be used:

[x%
foobar() - short function description of foobar
Qargi: Describe the first argument to foobar.
Qarg2: Describe the second argument to foobar.

One can provide multiple line descriptions
for arguments.

A longer description, with more discussion of the function foobar()
that might be useful to those using or modifying it. Begins with

empty comment line, and may include additional embedded empty
comment lines.

* K K X ¥ O X KX * % *

The longer description can have multiple paragraphs.

*k [

Such comment blocks should be placed just before the function or data structure being documented,
and the first line must be on a single line, with no lines before the argument lines.

Over-commenting in the Linux kernel is definitely discouraged, but any function (or data element)
which is lent to modules through EXPORT_SYMBOL(), or that is not declared as static and thus is
global in scope, is a good candidate.

Extraction of the documentation is done through the use of /usr/src/lnux/scripts/kernel-doc;
running without any arguments shows its use:

$ /fusr/src¢/linux/scripts/kernel-doc
Usage: /usr/src/linux/scripts/kernel-doc [-v]
[-docbook | -html | -text | -man]
[~function funcname [-function funcname ...]]
[nofunction funcname [-nofunction Ffuncname ...}]
¢ source file(s) > outputfile

7.3 Using Generic Kernel Routines and Methods

Avoid reinventing the wheel. There are many standard methods in place within the kernel and they
should be used where possible. Two examples:

78 CHAPIER 7. KERNEL STYLE AND GENERAL CONSIDERATIONS

e Linked lists, in patticular, doubly-linked (sometimes circular) lists (lhosc with next, prev
pointers) should use the routines defined in /usr/ src/linux/include/linux/list.h. These
handle all major tasks, such as insertion and deletion and walking through a list,

o Testing and setting bits in flags should be done safely with the functions described in
/usr/src/linux/arch/x86 /include/asm/bitops.h.

There is a lot of duplication in the Linux kernel, particularly among device drivers. For instance
many network drivers started from one or a few carly ones and then morphed. You may find drivers
which differ in just a few lines of code.

Furthermore, because of the rather unique way in which the Linux code base has evolved, there has
been quite a bit of parallel evolution.

While this kind of re-use is a good thing and is sometimes encouraged, from time to time natural
selection is enforced: if one method is superior, code containing the other method is converted. Don’t
sidestep known facilities without good reason. Your code will be rejected.

In a commercial product, such duplication might be avoided by more use of library-type routines,
or by writing one driver that can handle multiple hardware devices with conditional branches, As
Linux has matured more ol this hag happened.

7.4 Making a Kernel Patch

A patch is merely a text file that contains the differences between your modified source and the
baseline source. It is produced with the diff program and applied with the patch utility. Making a
patch file is trivial; doing it properly so that people can use it readily requires a little care.

Yo produce a patch, suppose the original source is in /usr/src¢/linux, and suppose your modified
source is in /usr/src/linux_hacked. You can produce the patch with the command:

cd fusr/src
diff -Nur linux linux_hacked > hacked_patch

wherc the -u option specifies unified format, the —r option forces diff to recurse through subdirec-
tories, and the —-N option says o consider files present in one tree and not the other.

You can then distribute this to anyone who has the original source and then they can apply the patch
simply by doing:

cd /usr/src/linux
patch —pl < hacked patch

However, for this to work properly you have to be careful, considering the following points:

¢ The original source (that under /usr/src/ 1inux) should be truly pristine as it was when it was
first unpacked. In any accompanying documentation you should say exactly which source you
are patching. It is acceptable to submit a patch of a distribution-supplied source, but clearly
give the name and pointer to the source you use. Tl this is for the kernel mailing list, use only
authentic unpatched original sources from http://www.kernel.org

5. SPARSE
7. S 79

» Your modified source should be cleaned up before producing the palch, perhaps using make
Wrproper. Only files that have actually changed should be included, and annoying changes in
items such as white space should be eliminated.

"The above procedure is complete enough, but it can be time consuming as it requires diffing the

whole kernel source even if there are just a few chan it mi i i
! ges, and it might re k
versions of the source around. ’ ¢ fuire fooping up o $ or &

One g'ood trick is to. rgake hard links instead of copies between the parts of the kernel you are nol
changing and the originals, and diffing will go very fast. ‘Lo do this you would do:

cd fusr/src
cp —al linux linux_work

Then suppose you want to change only one file, say kernel/sys.c. You would do:

cd linux_work/kernel
I 8yS.¢
cp /usr/src/linux/kernel/sys.c .

Removing 8Y8.C removes only the hard link in the current directory, not the original file. Now you
ha‘ve two entire directory trees that are hard linked together, except for the one file that you are
going to work on, and the diffing will be very fast indeed. (Note that the rm and cp steps are

UnneCessary when you are using some text editors, such as emacs to update the files; however with
vi it is necessary.) ’

For a dete.:ﬂed description of the exact format for patches submitted to the linux kernel mailing list, see
http:/ /linux.yyz.us/patch-format.html, http:// www.zip.com.an/ akpm/linux/ patéhes
/stuff/tpp.txt, and /usr/src/linux/Documentation/SubmittingPatches.

Before submitting a patch one should run the script /usr/sre/linux/scripts/checkpatch.pl on it
and clean up any warnings and errors that result.

7.5 sparse

sparse is o general purpose C-language parsing and analysis tool, originally written by Linus Tor-
valds. (Sparse stands for Semantic Parser.) By attaching various back-ends onto it i can serve

many purposes. For & le, i : : .
o I?;::ﬂt.p r example, if one were to attach a code-generation back-end, a compiler would be

For the kernel, however, _the back-end vsed is analysis code designed to scream about certain kinds
of errors (such as type mismatches), the list of which has been growing since sparse first appeared

Here’s an example of two (possible) errors sparse can pick up on:

static ssize_t mycdrv_read (struct file #file, char *buf, size_t count, loff t * Ppos};
— » —_— r

remove_proc_entry ("pre", 0);

80 CHAPTER 7. KERNEL STYLE AND GENERAL CONSIDERATIONS

In the first Line buf points to a user-space buffer, and should be tagged with the _ user attribute.
In the second line one should be using NULL for the null pointer instead of a value of 0. Thus the
corrected code would be:

static ssize_t mycdrv_read (struct file #file, char __user *buf, size_t count, loff_ t * ppos);

remove_proc_entry (“pre", NULL);

Note that during normal compilation, no noisc is made about these “errors” and the __user aftribute
is totally ignored; c.g., sparse is a syntax checker, nob a compiler.

T'he official web page for sparse is http://kernel.org/pub /linux /kernel /people/josh/sparse/
and the latest official release can be obtained [rom there. 1f you want to live on the edge, th(_: latest (%e—
velopment code snapshot can be obtained from http: / [www.codemonkey.org.uk/projects /git-
snapshots/sparse/

After untarring and decompressing it, it can be compiled and installed with:
make PREFIX=/usr/local install

which will put the binary in /usr/local/bin; you can adjust the value of PREFIX as desired.

Invocation of sparse is rather simple. You just to do

when compiling modules or the kernel; A value of ¢=1 does just the specific module file; a value of
=2 does all files.

7.6 Using likely() and unlikely()

Kernel code has had a history of using many goto statements. T'his has often caused newcomcers to
shake their heads. For instance one might have something like:

if (testi)
goto flunk_testl;
testl_continne:
if (test2)
goto flunk test2;
test?2_continue:

flunk testi:
. do something 1
goto testl_continue
flunk_test2:
. do something 2
goto test2_continue

7.7. LINKED LISTS 81

At first glance, this looks rather ineflicient and can be difficult to follow; it would seem (o be better
to do:

if (testi){
... do something 1....
}
if (test2){
. do something

1

However, the second code example can be less efficient. Because the compiler works together with
the processor on branch prediction, if the first example is written so that the most likely case

almost always falls through #t will run quicker, as the code further away In the source is assumed
less likely to be encountered.

Because the code can become confusing, especially to new examiners, such methods make the most

sense when the code is very often exccuted and saving a few cycles is very important; it was once
widely used in the scheduling routines for instance.

Beginning with gee version 2.96, Linux aids such prediction through the 1ikely () and unlikely()

macros, defined in /usr/src/linux/include/linux/compiler.h in terms of the ECC mMacro,
__builtin_expect (). When coded this way our example becomes:

if (unlikely(test1)){
<... do something 1....

}

if (unlikely{test2}){

. do something

}

with the use of the 1ikely () macro quite similar. The code is now easier to understand and gets
the benefits of branch prediction.

7.7 Linked Lists

Linked lists of data structures are very common in the Linux kernel, as they are in most major
software projects. They may be singly or doubly linked, and they may have ends or be cyclical.

A typical doubly linked list implementation would define a data structure with embedded next and
prev pointers, such as in:

struct my_struct {

struct my_struct *next, *prev;
int wal;
char #*my_data;

If the list is not cyclical it terminates with NULL for next at one end, and prev at the other. If i is

cyclical it joins on itsell, and traversing the list involves stepping through it until you arrive at the
starting element again.

82 CHAPTER 7. KERNEL STYLE AND GENERAL CONSIDERATIONS

While there is nothing wrong in principle with direct implementation of such a linked list, inclu('!ing
a new one is likely a good way to get your code rejected. Linux kernel developers have standardized

on one clever implementation and it should be adopted in new code.

i 1 i] i : ide a battery of functions
tage is that with a conventional implementation, one has to provi _ : ion
e o and other manipulations of the linked list. This is

insertion, removal, splicing, deletion, joining .
R o . ’ f the differing nature of the data structures. With

because cvery one is somewhat different becanse o : . , . ‘
the Linux standardized implementation, the same functions are used no matter what the linked data

structures are made of

A second advantage is the one that one is using well-tested, safe functions, which are generalized to
work on all architectures, and on which gradual refinements, enhancements, and improverments are
made.

The various functions and structures involved are detailed in /usr /sre/linux/include/linux Jlist.h.

The clementary data structure is

struct list_head {
struct list_head *next, *prev;

};

Any snd each node in the linked list can be used to start traversal; hence the unusual name
d to place a list_head structure inside the structure you are

1igt_head. To use this facility you nee
linking. For example,

struct my_struci{
struct list_head list;
int val;
char *my_data;

The critical point to understand is that the next,

to use the list_entry() macro detailed shortly.

The list head must be initialised prior to use. "This can be done statically at compile time as:
LIST_HEAD{(my_list);

or

struct my_struct me = {
.list = LIST_HEAD INIT (me.list);
val = 0;
.my_data = NULL;

or at run time as:

prev pointers in the list_head structure do

not point to the data structures in which the 1ist_head is embedded. Instead, th.ey ploini; to the
1ist_head ficld within those stroctures. To retrieve a pointer to the data structure itself, one needs

7.7. LINKED LISTS a3

struct my_struct *me = kmalloc (sizeof (struct my_struct), GFP_KERNEL);
me—>val = 0;

me—->my_data = NULL;

INIT_LIST_HEAD (&me->list);

struct list_head my_list;
INIT_LIST_HEAD(&my_list);

The main functions (some are macros) involved in manipulating doubly-linked lists are:

#include <linux/list.h>

void list_add {struct list_head ¥new, struct list_head ¥head);
void list_add tail (struct list_head #new, struct list_head *head) ;
void list_del (struct list_head #entry) ;

int list_empty (struct list_head #*head);

void list_splice (struct list_head *list, struct list_head *head);

list_add(} inserts an element pointed to by its first argument after that pointed to by ils second
argument.

list_add. tail() inserts an element pointed to by its first argument at the end of the list pointed
fo by its second argnment.

list_del() removes the clement pointed to from its linked list. One must still deallocate any INCMmory
associated with the linked data structure.

list_empty () checks if the pointed to lis{ is emply.

list_splice() joins two lists together, where the first argnment points to the new list and the second
tells where to insert i,

The following macros are used to work through a linked list:

list_entry (ptr, type, member);
list_for_sach (pos, head)};
list_for_each_prev (pos, head);
list_for_each_safe {pos, n, head);

list_entry() returns a pointer to the data structure of the type indicated in its second argument,

from the list whose head is pointed to by the first argument, and of which the member we desire is
given by the third argument.

list_for_each() is used lo iterate over the list pointed to by its second argument, performing
operations on its first argument. list_for_each_prev() iterates over the list backward.

_]_ist_for_each_safe() handles the case where one is removing the list entry; the second argument
Is a pointer to a struct list_head that is used for temporary storage.

A variant is to use the list_for_each entry (pos, head, member) convenience macro {where

member is the name of the list slructure within the structure) so that the two following code fragments
accomplish the same thing:

CHAPTER 7. KERNEL STYLE AND GENERAL CONSIDERATIONS 7.8. WRITING PORTABLE CODE - 32/64-BI'T, ENDIANNESS
84 ; ' ’

¥

return j;

LIST_HEAD (h);
struct list_head *1;
struct my_s *s;
list_for_each (1, &h} {
s = list_entry (1, struct my_s, list);

7.8 Writing Portable Code - 32/64-bit, Endianness

Linux has been ported to more platforms than any other operating system. Even if the code you
are wriling is intended for one particular kind of hardware, as far as possible your code should be
hardware-independent. Therc are at Ieast two reasons for this:

or

LIST_HEAD (h};

struct my_s *s; ¢ "There is an ongoing effort to keep code as architecture-clean as possible. If platform-dependent

list_for_each_entry (s, &h, list) { code proliferates, even where it is clearly intended only to be used on one kind of hardware, it be-
comes difficult to root out those locations where the code really could be hardware-independent,

but it isn’t either through the process of evolution or sloppy design.

}

. ,
There are some other functions and macros, and a lot of documenta,bl'on in the hca.del.'tﬁl?;mzire ;
a code fragment showing how to set up a linked kst, add elements to it, and traverse it, T &
function on its items:

¢ You can never be sure what platform the kernel (and your code) may be run on in the future.
For instance your device may at some point be hooked up to an TA-64 motherboard, rather
than the x86 one you were thinking of when you developed the driver for it.

LTST_HEAD (my_list); Thus you should never make assumptions about parameters such as the page size, length of an

address, etc. Use the general variable types and definitions used in {he kernel; i.e., use offset_t

struct my_entry for a file oflset, not an unsigned long. Where the actual byle-length of a variable is important and

{ rigid, one should use the built-in kernel types, like u32 etec.

t list_head list;) .]
i:;u;tv;i. Assumptions about endianness (big-endian vs. little-endian) shounld be avoided. Use the available
char strvar[201; kernel functions which are conscious of endianness, such as those that manipulate PCT cgnﬁguration

}

registers, and various network facilities.

tatic void mylist_init (void) 1ruly platiorm-dependent code should be confined to the appropriate arch directory.
B —

{
struct my_entry *me;
int §; 7.9 Writing for SMP
for (3 = 0; j < NENIRY; j++) {
me = kmalloc (sizeof (struct my_entry), GFP_KERNEL);
me->intvar = j; While symmetric multiprocessor (SMP) machines are still relatively rare, hyper-threaded and multi-
sprintf (me—>strvar, "My _%d", J + 1); core CPUs which behave much like multiprocessor systems are now quiet common. Your code is likely
list_add (dme->1ist, &my list); o be run on SMP machines even if it deals with a low-performance kind of hardware or facility.
¥ Thus you must always think about questions like:
¥

static int walk list (void) * What if more than one processor is running the code at the same time?
{
int j = 0;

e Are there global variables that require synchronizalion?
gtruct list_head #1,;

¢ Can an interrupt be dealt with on one CPU while another ig handling a read or a write to the

if (list_empty (&my_list)) device, and thereby corrupt data?
1 - -

return 0;

list_for_each (1, &my_list) { st
struct my_entry *me = list_entry (1, struct my_entry, list);
foobar (fme—>intvar);
Jtt;

Avoiding race conditions requires good design and carcful thinking of all the possibilities, and the
various synchronization facilities must be utilized, such as spindocks, semaphores, etc..

36 CIIAPTER 7. KERNEL STYLE AND GENERAIL CONSIDERATIONS

On single CPU systems some of the synchronization directives may become no-ops, but you still have
to employ them. On an SMP system, that simple mouse driver you wrote might wind up paralyzing

the system.

Obviously, it is not possible to test fully for SMP behaviour on a single processor system. Dut
one minimal step you can do is to use an SMP kerncl, and compile your code with SMP defined.

Wherever it is humanly possible, try to test your code on an SMP system.

A good test is to turn on the kernel preemption conliguration option on a single processor machine;
many SMP bugs may be uncovered.

7.10 Writing for High Memory Systems

Don'l, assume that your driver will only be used on systems without much memory. Wherever possible
think about what will happen if the system has a lot of RAM.

Be careful about things like the number of bits in an address or a file offset, or doing anything that
seales with the amount of available RAM.

7.11 Keeping Security in Mind

Major security holes can be caused by even minor errors in kernel code. Code should be reviewed
early and often with security in mind.

User-space parameters should not be trusted by default. Drivers (and other facilities) should check
permissions and nse the capability functions to check whether or not anything that is requested is
permissible.

Care should be taken with respect to integer type mismatches, type casts, etc., 8o nothing unforeseen
takes place. Resource nsage should be limited to avoid Denial of Service attacks.

7.12 Mixing User- and Kernel-Space Headers

Applications and libraries in user-space, and kernel code {modular or not), require the inclusion of
headers (files with a .h extension.)

Because the kernel is an isolated universe, it can’t usc user-space headers, it can't link to user-
space libraries etc. All kernel code nscs the headers lying under /usr/src/linux/include or
Just/src/arch/. . /include (assuming the kernel source is at /usr/src/ linux.)

This is very different than the way it is done on other operating systems so it takes Linux converts
some time to get used to. The upshot is kernel files must never, never include user-space headers.

This means you can’t have anything like

#include <stdio.h>
#include <sys/types.h>
#include <bits/errmo.h>

7.13. LABS
87

Note no header files can be found directly i i i i
tly in the /usr/src/linux/include direct ¢
all header files are in the 1linux or asm directories. © directory; and almost

{Note: some recent kernels have broken this rule in order to better in if;
' >y eract with user-s
This seems to be the only acceptable violation.) erspnce debuggers

‘Applications and libraries, on.the other hand, nse headers which usually reside under /usr/include
fmd a few other places. This is associaled with a second rule: User code must almost never
include kernel-space headers directly. While it is true that a header file like fusr/include/unistd.h

Wﬂ] VeIl V 341 p Clud]llg / I/SI C/llﬂux/lnclude 1] nux ll'[llstd . li]E()HI(] 1 one
eves ﬂa” Wi II u 11t us /
/ h, 8 153 d 1

There are some e?cceptions to this rule; they are always in cases where some direct interface with
the kernel is required, generally a very non-portable one. Examples are when making systems calls

directly from programs without passing through libc on the wa r i S5€
S b .
3 ,:Y) - 0 call £ ¥, Or creating processes and/or threads

Ano.ther consideration is the fact that user-space libraries and applications may need to know infor
mation about the kernel and have to interface with it through system calls. Unfortunato] o
easy method is for user-space code to include various kernel-space headers. HO\;VGVPI‘ if the keff; (;DC
changed so will these headers, so there is the potential danger that there will be a ’c;)]h'sior; betv:eelri

Ehe headCI‘S Wltil Whlch the k(:l l'le| dll(i a:ppli(.dtl()ﬂ were COmI)]le 0 I al a [)I](.al 10N {0 lh] y
d, Lh
a p (T l ar)

To avoid t_;his, distributiom_s include a version of the kernel headers that is packaged with glibe

?ﬂd Eere 13 eff/ect at the time the system and the libraries were compiled and assembled placed
irectly under /fusr/include. This can cause some inconveniences whe ili ;

is generally a preferable solution. ' v compiling femel code, but

The side effect of the above considerations is that since the defanlt behaviour of the compiler is to
scarch /usr/include before /usr/src/include, when you compile kernel code the locatEi)on of th

kerr'lel headers is explicitly specified with the -I option, and -nogtdinc is supplied ag a compil :
option to make sure standard headers are not picked up accidentally. , o

7.13 Labs

Lab 1: Linked Lists

Write a module that sets up a doubly-linked circular list,
: g : of data structures. The dat ¢
be ag simple as an integer variable. ¢ ot stcture can

Test inserting and deleting elements in the list.

Walk through the list (using list_entry () int out
' _ y()) and print out values to mak : i
deletion processes are working. ke sure the fnsertion and

Lab 2: Finding Tainted Modules

All modules loaded on the system are linked in a list that can be accessed from any module;

88 CHAPTER 7. KERNEL STYLE AND GENERAI CONSIDERATIONS

struct module {

struct list_head modules;
chax name [MODULE_NAME_LEN] ;
1:1:-L=..;igned int taints;

Write a module that walks through this linked list and prints out.the vaflue of tai.nts and agy lotlllle;
values of interest. (The module structure is defined in /usr/src/linux /include/linux /module.h.

You can begin from THIS_MODULE.

Lab 3: Finding Errors With Sparse

We give you a minimal module that compiles cleanly, but has at least two errors that show up with
the use of sparse.

Install sparse according to the description given earlier and correct the errors.

Chapter 8

Interrupts and Exceptions

We'll take a detailed look at how the Linux kernel handles synchronous
interrupts (exceptions) and asynchronous interrupts. We'll consider message-signalled interrupts
(MSI). We'll show how to cnable/disable interrupts. We'll have a discussion of what you can and
can not do when in interrupt context. We'll consider the main data structures associated with
interrupts and show how to install an interrupt handler, or service routine. Finally well discuss in
delail what has to be done in the top and bottom halves of such functions.

8.1 What are Interrupts and Exceptions? 90
8.2 Execeptions 20
83 Interrupts e e e e e e e e e e e 92
84 MSI F e e e e e e e e e e e e e e e 94
8.5 Emabling/Disabling Interrupts 95
8.6 What You Cannot Do at Interrupt Time 96
8.7 ITRQ Data Structures v vt v vt it e e 96
8.8 Installing an Interrupt Handler 99
89 Tabs e e e e e i e e e e e . 101

89

90 CHAPTER 8. INTERRUPTS AND EXCEPTIONS

8.1 What are Interrupts and Exceptions?

An interrupt aliers (interrupts) the instruction sequence followed b.y a processor. It is always
comnected with an electrical signal stemming from either inside or outside the processor.

When an interrupé arrives the kernel must suspend the thread it is ct%rrently cxecu&ing_, d(-:‘al with I-t
by invoking one or more service routines (ISR) (or handlers) assigned to the specific interrupt,
and then return to the suspended thread, or service another interrupt.

Under Linux, interrupts should never be lost; the ser'vice routines may be delayed_ a;ccordlt?g tro
various locking mechanisms and priorities, but will be mvoked. eventually. I'If)weverl,1 in _ertrup S Ea,oe;
not queued up; only cne interrupl of a given type will 1?6 servmec'l, alt‘}loggh if another interrupt o
the same type arrives while it is being serviced, it too will be serviced in turn.

T'here are two distinct kinds of interrupts:

¢ Synchronous interrupts, often called exceptions, are generated by the CPU.

s Asynchronous interrupts, often just called interrupts, are gencrated by other hardware de-
vices, and are generally fed through the APIC (Advanced Programmable Interrupt Controller.)

Exceptions may be caused by run time errors such as divisi_on by zero, or by special iondlt;(]’lnil :;;Sh
as a page fault. They may also be cansed by certain instructions, such as thej one a system c. 1l makes
$0 request the CPU enter kernel mode to service a request from user-land. 1h(‘e)‘z may oceur i

of process context. They offen cause a signal to be sent to one or more processes.

Interrupts generally arise from relatively random events such as a mouse ch'(;.k, keyboa.rd fr(’e;.;, a
packet of data arriving on a network card, etc, or more regular events such as a timer interrupt. They
are never associated with a process context.

Interrupts are very similar to signals; one might say interrupts_ are hardwz'zre signals, or signals are
software interrupts. The general lessons of efficient and safe signal handling apply equally well to
interrupts.

Interrupt handling is one of the most difficult tasks incurred by the kernel. It requires careful design
to avoid race conditions and problems with non-reentrant code.

Under Linux interrupts may be shared, and when an interrupt is shared, all ha,ndlalars for that interrjlpt
must agree to share. Each of them will receive the interrupt in turn; i.e., there is no consurmption
of the interrupt by one of the handlers.

8.2 Exceptions

Exceptions fall into two calegories:

Processor-detected exceptions are generated when the CPU senses a condition during instruction
execution. These can be of three types, according to the value of the eip register on the kernel mode

stack:

o Faults: the register contains the address of the instruction that induced thfa fault; .whe.n the
exception service routine completes, execution will be resumed from that mstruction if the

8.2. EXCEPTIONS 91

handler is able to deal with the anomalous condition that produced the exception, such as a
page fault.

o Traps: the register contains the address of the instruction to be executed after the one that

induced the trap. Traps arc mainly used for debugging and tracing methods and there is no
need to repeat the instruction that caused the trap.

o Aborts: the register may not contain a meaningful value. There may be a hardware failure or
a invalid value in system tables. The abort handler will terminate the affected Process.

Programmed exceptions are requested by the process through int or int3 instructions {on x86),
such as when invoking a system call. They may also be triggered by the into instruction which checks
for overflow, or the bound instruction, which checks on address bound, when the checked condition
is false. Programmed exceptions arc handled just like traps and are sometimes called software

interrupts.

On 32-bil x86 CPUs there are up to 32 exceptions possible, numbered from 0 (o 31. The exact

mumber depends on the processor. The signal listed in the following table is usually sent to the
process which triggered the exceplion.

Table 8.1: 32-bit x86 exceptions

| Exception/ Type | Signal Meaning
Service Routine
0 | Divide Error fault SIGPE Attempted division by 0.
divide_error()
1 | Debug trap SIGTRAP Used by debugging and tracing
debug(} or programs.
fault
2 | NMI None | None Reserved for nonmaskable in-
nmi () terrupts that use the NMI pin.
3 | Breakpoint trap STIGTRAP Debugger has inserted a int3
ink3(Q) : instruction (breakpoint).
4 | Overflow trap SIGSEGY An into instruction has been
overflow() executed and overflow detected.
5 | Bounds Check fault | SIGSEGY A bounds ingtruction has been
boundg () executed and the operand is
oulside of valid bounds.
6 | Invalid opcode fault | SIGILI, Bad opcode (part of the CPU
invalid_op() instruction that selects the op-
eration.)
7 | Device not available fanlt SIGSEGY A [oating point or MMX in-
device_not_available() struction executed with the TS
flag of cr0 set.
8 | Double fault abort | SIGSEGV | An exception detected while
double_fault () trying to handle a prior one,
and for some reason they can’t
be handled in turn.
9 | Co-processor segment overrun abort | SIGFPE Problem with a math co-
coprocessor_segment_overrun() processor, like a x387 chip.

92

CHAPTER 8. INTERRUPTS AND EXCEPTIONS

L

simd_coprocessor_error{()

10 | Invalid 1'SS fault | SIGSEGY Attempted context switch to a
invalid_tes() process with an invalid TSSS.
11 | Segment not present fault SIGBUS Reference made to a segment
segment_not_present () not present in memory.
12 | Stack Exception fault SIGBUS An attempt was made to ex-
stack_segment (ceed the stack segment length,
or the segment is not in mem-
ory.
13 | General Protection fault | SIGSEGV Protected mode has been vio-
general_protection() lated.
14 | Page fault fault SIGSEGV Page is not in memory, the
page_fault () page table entry is null, or gome
other paging problem.
15 | Reserved None | None None
16 | Floating Point Error faukt | SIGFPE Tntegrate FPU has an error
co-processor_error () condition such as overllow or
diviston by 0.
17 | Alignment Check fault | SIGSEGY Operand not, correctly aligned,
alignment_check() such as a Jong integer on an ad-
dress not a multiple of 4.
| 18 | Machine Check abort | None Severe hardware problem, usu-
machine_check() ‘ ally in the CPU, or memory.
19 [SIMD error fault | SIGSEGV Problems with executing SIMD

(Single Instruction Multiple
Data) math instruction.

Note that the actual handler function is prefixed with do_.
funclion is do_page_fault(), with the actual work of pointing (o t

/usr/sre/linux /arch /x86 /kernel/entry 32 S,

8.3 Interrupts

There are two kind of asynchronous interrupts:

o Maskable interrupts are sent to the TNTR microprocessor pin. They can be disabled by

appropriate flags sct in the eflags register.

« Nonmaskable interrupts are sent to the NMI microprocessor pin. They can not be disabled

Thus the page fault exception handler
he real function being done in

and when they occur there is usually a critical hardware failure.

Any device which issues interrupts has an 1IRQ (Interrnpt ReQuest) line, which is connected to an
APIC {Advanced Programmable Inlerrupt Clircuit.)

On the x86 architecture one has a Local APIC integrated into each CPU. Additionally one has an

1/0 APIC used through the system’s peripheral buses.

8.3. INTERRUPTS
93

The I/O APIC routes interrupts to indivi . .
it keeps. rupts to individual Local APICs, according to a redirection table that

The Local APIC constantly monit i it 1 i i
he Local AT y monitors the IRE) lines it is responsible for and when it finds a. gignal

e Notes which TRQ is involved.
e Stores it in an I/O port it owns so it can be read on the data bus.
o Issues an interrupt by sending a signal to its INTR pin.

e When the CPU acknowledges t iti i
e owledges the TRQ by writing back into a controller 1/0 port it clears the

o Goes back to waiting for a new interrupt to arrive.

]lSt O i1 Ontly lllstalled II:Q haﬂdlEIS can be ()btd]ﬂe(l m) at [)l oC l; [)f;
A - flc It h f[‘O the (¥ mmal’ld C / /111 erru S.,

CPUO CPU1 CPU2 CPU3

0 129 1 2 1 I0-APIC-edge timer
1: 722 12 40 32 I0-APIC-edge i8042
8: 0 0 0 1 I0-APIC-edge rtel
12. 1542 0 0 I0-APIC-fasteoi acpi
18; Bt 9?8 102 90 I0-APIC-fasteoi uhci_hcd:usb3, pata_marvell, nvidia
o] 14 18141 I0-APIC-fasteoi eth(, ehci_hcd:ushbl, uhci_hcd:usbs
19: 2 1 1 0 I0-APIC-f i “hci—th:HSbg |
oy A asteO} uhc?*hcd:usb7, ohcil3gd
IC-fasteoi uhci_hcd:usbd
22: 534 161 4510 2284 I0-APIC-fasteoi HPA Intel
23: 44436 38789 4644 4122 I0-APIC-fasteoi ehci_hcd:usb?, uhci hcd:usbé
28: 0 0 1 0 PCI-MSI-edge ethl_ ’ i .
29: 17368 2567 18150 17191 PCI-M3I-edge ahci
NMI: 0 ¢ 0 ¢ Non-maskable interrupts
LOC: 255569 16184 147985 131046 Local timer interrmpts
5PU: 0 0 0 0 SBpurious interrupts
RES: 1849 1183 1620 1158 Rescheduling interrupts
CAL: 340 475 475 450 Function call interrupts
TLB: 1773 2734 1720 2689 TLB shootdowns
;ggf 0 0 0 0 Thermal event interrupts
ERR; g o 0 0 Threshold APIC interrupts
MIS: 4

iote t:ial;‘ tht(;ﬁm(?}}tl)erzl here are the number of times the interrupt line has fired since boot Only
rrently installed handlers are listed. If a handler is unregi i -

: : . . s gistered (say through unloading a modul
and then it or another handler is later re-registered, the number will not be zeroed in thi prm(:)es: °

You will also notice two types of interrupts:

¢ Level-triggered interrupts res d fri ;)
value. pts respond to an clectrical signal (generally a voltage) having a certain

94 CHAPTER 8. INTERRUPTS AND EXCEPTIONS

e Edge-triggered interrupts respond to a change in electrical signal, which can be either up or
down.

Tn principle one could miss a level-triggered interrupt if it is cleared somehow before the change in
condition is noticed.

On SMP systems interrupts may be serviced on any available CPU (although affinities can be
mandated), but only one CPU will handle an interrupt of a certain kind at the same Lime.

It is sometimes advantageous to set ITRQ-affinity; to force particular inlerrupts to be dealt with only
some subset of all the CPUs, rather than being distributed roughly equally.

This is done by accessing /proc/irq/IRG#/smp_affinity. (Note on 64-bit platforms this hexadeci-
mal entry has two 8 digit sets, separated by a comma.) One can not turn off ail CPUs in the mask,
and won’t work il the physical TRQ controller doesn’t have the capability to support an aflinity

selection.

The irgbalance daemon dynamically adjusts the TRQ affinily in response to system condilions.
It takes into account performance (latency and cache coherence) and power consumption (keeping
CPUs no more aclive than necessary when system load is light.)

There was also an in-kernel TRQ-balancing option, but this was deprecated and finally removed
in kernel version 2.6.29 in favor of the user-space solution. Full documentation about the dacmon
method can be found at http://www.irgbalance.org.

8.4 MSI

in pre-PCI-e (PCl-express) buses interrupts are line-based and are now considered as legacy tech-
nology. The external pins that signal interrupts are wired separately from the bus main lines, pro-
ducing out of band signalling.

PClI-e maintains compatibility with older software by emulating this legacy behaviour with in-band
methods, but are still limited to only four lines and often require sharing of interrupts among devices.

‘The PCI 2.2 standard added a new mechanism known as MSI (for Message-Signalled Interrupts),
which was further enhanced in the PCT 3.0 standard to become MSI-X, which is backward compat-

ible with MISI.

Under MSI devices send 16-bit messages to specilied memory addresses by sending an inbound
memory write to the front side bus (FSB). The message value is opaque to the device but delivery
generates an interrupt. 'The message is not acknowledged, and thus we got an edge-triggered interrupt.

Under MSI each device can use up to 32 addresses and thus interrupts, although the operating
gystem may not be able to use them all. The address is the same for each message, bub they are

distinguished by modifying low bits of the message data.

Under MSI-X the messages become 32-bit and up to 2048 individual messages can be senl for each
device. Bach MSI-X interrupt uses a different address and data value (unlike in MST).

There are important advantages of using message-signalled interrupts. First, the device no longer has
to compete for a limited number of TRQ lines; thus there is no need to share. Interrupt latency is
therefore potentially reduced and getting rid of sharing also makes behaviour more predictable and

less variable.

8.5. ENABLING/DISABLING INTERRUPTS 9
D

MBI is optional for PCT 2.3 compliant devices and mandatory for PCI-Express devices. Support for

MSI c]'nd MSI“X_ must be Conﬁgllrcd m the keI]lf‘l 0 use 4|]e|| I]y one i ar Ii 13
o L b M i
A ; ,O il SaIId dca.n euS»d mn a

Details about the Linux implementation are gi i
_ ; x given in /usr/src/linux/Documentation /MSI-
HOWTO.txt, which containg details about the APT and enumerates important consideratic{ns.)

8.5 Enabling/Disabling Interrupts

Sometimes it iS uSCfl]l fO[& dI‘i ver tO Ol’la.ble al’ld dj € i 1Lert [6 1 el 10} |
Sa-bl > i H i
.) . . : u I'tlIlg fOI‘ an IRQ 1}Ee. 3 he

#include <asm/irqg.h>
#include <linux/interrupt.h>

void disable_irq (int irq);
void disable_irq nosync (int irg);
void enable_irq (int irq);

r_l. hOS CLi nsg are effe(j i On}y f n W I-I ey are (:a] le(O S I 4
€ a O 2 five or t}le ()P (} O Ch th &) 0] i
- . i ¥ 4 3 Lhel' Processors contimue to

Because the kernel antomatically disables an interrupt before calling its service routine and enables

it again when done, it makes no sense t ; i i ithi
particular TRQ. ' ense to use these fiunctions from within the handler servicing a

G;l]‘hng disa'ble__irqo ensurt'as any presently executing interrupt handler completes before the dis-
ermﬂ a;nfe(;fﬂlr% }wh;ile Slfsable_lrfq_nosync () will return instantly. While this is faster, race condiﬁorls
. The first form is safe from within TRQ context: the second fi i : '
the first form can lead to deadlock if it is 1 i : o being e Bowever,
_ . 1sed while a resource is bei ' ;
need; the second form may permit the resource to be freed. ¥ being held that the handler may
It]15 imp(?rtant to noti_ce tha(the enable/disable functions have a depth; if disable irq() has heen
called twice, enable_irq() will have to be called twice before interrupts are handle_d again

It is also possible to disable/enable all interrupts, i
‘ ‘ y pts, in order to protect critical secti T'hi
is best done with the appropriate spinlock ﬁlnctions: Fections of code. “this

unsigned long flags;
spinlock_t my lock;
spinlock_init (&my lock);

spinmlockﬁirqsave(&my_lock,flags);

...... critical code
spin_unlock_irgrestore (&my_lock,flags);

You should be very careful with the use of these fanctions as you can paralyze the system

96 CHAPIER 8. INTERRUPTS AND EXCEPTIONS

8.6 What You Cannot Do at Interrupt Time

Tnterrupts do not run in process context. Thus you cannot refer to current to access the ficlds of
the task_struct as they are ill-defined at best. Usually current will point to whatever process was
running when the interrupt service routine was entered, which has no a priori connection to the IRQ.

Anything which blocks can cause a kernel freeze, at least on the processor that blocks. In particular
you cannot use any of the sleep functions, directly or indirectly. Indirect usage would happen for
instance il you try to allocate memory with the flag GFP_XERNEL which can block if memory is not
currently available, so you have to use GFP_ATOMIC instead, which returns on this situation.

You cannot call schedule() for similar reasons, or any call that indirectly calls the scheduler, such
as all the sleep functions.

You cannot do a down{) eall on a semaphore as it can block while waiting for a resource. However,
you can do an up() or any kind of wake_up(} call. ’

You cannot request loading a module with request_module ().

You cannot transfer any data to or from a process’s address space; ie., no use of the get_user(),
put_user (), copy_to_user(), copy_from_user () functions. These functions have the potential to
go to sleep. Additionally, because there is no real user context, one can not transfer data to and from
user-space using these functions.

8.7 IRQ Data Structures

The basic data structures involving TRQ's are defined in /usr/src/linux/include/linux /irq.h and
Jusr/src/linux /include /linux/interrupt.h.

Tor each TR(Q} there is a descriptor defined as:

2.6.31: 167 struct irqg_desc {

2.6.31: 168 unsigned int irg;

2.6.31: 169 struct timer_rand_state *timer_rand_state;

2.6.31: 170 unsigned int *kstat_irqgs;

2.6.31: 171 #ifdef CONFIG_INTR_REMAP

2.6.31: 172 struct irg_2_iommu: *irq_2_iommu;

2.6.31: 173 #endif

2.6.31: 174 irq_flow_handler_t handle_irq;

2.6.31: 176 struct irg_chip *chip;

2.6.31: 176 struct msi_desc *msi_desc;

2.6.31: 177 roid *handler_data;

2.6.31: 178 void #chip_data;

2.6.31: 179 struct irgaction #action; /* IRQ action list */
2.6.31: 180 unsigned int status; /% IRQ status */

2.6.31: 1831

2.6.31: 182 unsigned int depth; /% nested irq disables */
2.6.31: 183 unsigned int wake_depth; /* nested wake enables */
2.6.31: 184 unsigned int irg_count; /#* For detecting broken IRQs */
2.6.31: 186 unsigned long iast_unhandled; /% Aging timer for unhandled count */
2.6.31: 186 unsigned int irgs_unhandlied;

2.6,31: 187 spinlock_t lock;

87. IRQ DATA STRUCTURES

2.6.31: 188 #ifdef CONFIG_SMP

2.6.31: 189 cpumask_var_t affinity;
2.6.31: 190 unsigned int node;

2.6.31: 181 #ifdef CONFIG_GENERIC_PENDING_TRQ

2.6.31: 192 cpumask_var_t pending mask;
2.6.31: 193 #endif

2.6.31: 194 #endif

2.6.31: 195 atomic_t threads_active;
2.6.31: 1986 wait_queue_head_t wait_for_threads;
2.6.31: 197 #ifdef CONFIG_PROC_FS

2,6.31: 108 struct proc_dir entry *dir;

2.6.31: 199 #endif

2.6.31: 200 const char *name ;

2.6.31: 201 } ____cacheline_internodealigned_in_smp;

status can be one of the following values:

‘l'able 8.2: IRQ} status values

Value Meaning

IRG_INPRDGRESS ‘The handler for this IRQ handler is currently being executed.

IR(_DISABLED The TRQ line has been disabled.

IR{. PENDING An IRQ has occurred and been acknowledged, but not vet serviced.

IRQ_REPLAY The TRQ Iine has been disabled but the previous occurrence on this

line has not yet been acknowledged.

IRQ_AUTODETECT 'Ihe kernel is frying auto-detection on this IRQ line.

TRE_WAITING 'The kernel is trying auto-detection on this IRQ lipe and no interrupts

have yel been detected.

TRQ_LEVEL The IRQ line is level-triggered.

IRQ_MASKED ‘I'he IRQ line is masked and shouldn’t be seen again.

TRG_PER_CPU The TRQ is per CPU.,

action lists the service routines associated with the IRQ; the element points to the first irgaction
structure in the list. We'll describe this structure in detail.

depth is 0 if the IRQ line is enabled. A positive value indicates how many times it has been disabled.
Fach disable_irq() increments the counter and each enable_irq() decrements it until it reaches
0 at which point it enables it. 'Thus this counter is used as a semaphore.

98

lock is used to prevent race conditions.

The irqaction structure looks like:

MHN DK DR DN NN NN
PR AR B DO

handler points to the interrupt service routine, or handler, that is triggered when the interrupt
arrives. We'll discuss the arguments later.

flags is a mask of the following main values:

.31
.31:
.31:
.31
.31:
.31
.31
.31
.31
.31:
.31:
.31:
.31:

93 struct irgaction {

094
95
96
97
a8
99
100
101
102
103
104
105 };

CHAPTER 8. INTERRUPTS AND EXCEPTIONS 8.8, INSTALLING AN INTERRUPT HANDLER

99

Note that if the IRQ line is being shared, the IRQF_DISABLED flag will be effective only if it is specified
on the first handler registered for that TRQ line.

mask indicates which interrupts are blocked while running.

name points to the identifier that will appear in /proc/interrupis.
irq_handler t handler;

unsigned long flags;
cpumask_t mask;
const char *name;
void #*dev_id;

dev_id points Lo a unique identifier in the address space of the device driver (or kernel subsystem)
that ha_s registered the IRQ. It is used as a cookie to distinguish among handlers for shared TRQ’s
and is important for making sure the right handler is deregistered when a request is made. Device

drivers often have it point to a data structure which the handler routine will have access to. If the

struct irgaction *next; IRQ) is not being shared, NULL can be used.

int irqg;

struct proc_dir_entry #dir;
irg_handler _t thread_in;
struct task_struct *thread;
unsigned long thread_flags;

next points (o the next irgaction structure in the chain that are sharing the same TRQ.

8.8 Installing an Interrupt Handler

Normally device drivers do not directly access the data structures we just described. Instead they
use the following functions to install and uninstall interrupt handlers:

#include <linux/interrupt.h>

int request_irq (unsigned int irq,
irgreturn_t (*handler)(int irq, woid *dev_id);

Table 8.3: IRQ handler flags

unsigred long flags,

Plag Meaning const char *device,
] _ _ _ — — void *dev_id);
IRGF_DISABLED The interrupt runs with inferrupts disabled; ie., it is a fast void synchronize_irq (umsigned int irg);
handler. void free_irq (umsigned int irg, void *dev_id);
The IRQ may be shared with other devices, il they all mutually o .))
TROF_SHARED agrz . t?it Y ! irq is the interrupt number. It is used only if the handler can be used for more than one interrupt.
i handler () is the handler to be installed.
IROQF_SAMPLE_RANDOM The IRQ line may coniribute to the entropy pool which the _ . . '
system uses to generate random numbers which are used for flag_s is the same bit-mask of options we described before; i.e., TRQF_DTSABLED elc. Requesting
purposes like encryption. This should not be turned on for sha.rmg_ when the IRQ has been already registered as non-sharing may generate verbose but harmless
Ainterrupts which arrive at predictable times. debugging messages.
device is the same as the name field in the irqaction structure; it sets the identifier : ing i
IRGF_PROBE_SHARED Set when sharing mismatches are expected to occur. /proc/interrupts: ’ GRUICT appearing in
IRQF_TIMER Set to indicate this is a timer interrupt handler. dev_id is the same unique identilier used for shared TRQ lines that appeared in the irgaction
structure.
IRQF_ROBALANCING Set to exclude this interrupt from irq balancing. The handler () function has two arguments:
TROF_TRONOPOLL Interrupt is used for polling (only the interrupt that is regis- o '
tered first in an shared interrupt is considered for performance * irq is useful if more than one IRQ is being serviced.
Teasons) e dev_id is used for sharcd interrupts.

100 CHAPTER 8. INTERRUPTS AND EXCEPTIONS

o Kernel

Kernel
Varsion Version
Note Nota

e Kernels earlier than 2.6.19 contained a third argument, a data structure of type
pt_regs, which holds a snapshot of the processor’s coubext before the interrupt.
It is used mostly for debugging, and for restoring the register state after the in-
terrupt is handled. The precise definition of this structure is CPU-dependent; sec

Jusr /src/linux/arch/x86/include/asm/ptrace.h.

e The pt_regs argument was removed in the 2.6.19 kernel, as it was rarely used in drivers,
and eliminating it saved stack space and code, and boosted performance somewhat.

o If access to this structure should happen to be needed, the inline function
struct pt_regs *regs = get_irq_regs(); can be used.

request_irq() can be called either upon device initialization or when the device is first used
(open()). Before the introduction of udev it often was better to do it in open() wht-an the de-
vice was first used. However, with udev one doesn’t tend to pre-load devices. This function should

be called before the device is sent an instruction to enable generation of interrupts.

free_irq() can be called either during cleanup or release () (close). This function should be called
only alter the device is instructed not to interrupt the CPU anymore.

Before calling free_irq() one should call synchronize_irq() which ensures that all handlers for
this particular IRQ are finished running before the free request is made. Omne should be careful that

this function does not block.

"The interrupt handler returns a value of lype irqreturn_t. The three possible return values are:

Table 8.5: IRQ handler return values

Return Value Meaning

IRQ_NONE The handler didn’t recognize the event; i.e., it was due to some other
device sharing the interrupt, or it was spurious.

IRQ_HANDLED The handler recognized the event and did whatever was required.

TIRQ_RETVAL(x) Fvaluates as TRQ_BANDLED if the argument is non-zero; TRQ_NONE oth-
erwise.

8.9. LABS _ 101

If no registered handler returns TRQ_HANDLED for a given IRQ, it is assumed to be spuricus and a
warning messaged is printed. Note that there is still no consumption of mderrupts; all regisiered
handlers are still called for a given IRQ line, even if one or more of them claims to have handled the
evenl.

8.9 Labs

Lab 1: Shared Interrupts

Write a module that shares its IRQ with your network card. You can generate some network interrnpts

gither by)browsing or pinging. (If you have trouble with the network driver, try using the mouse
interrupt.

Check /proc/interrupts while it is loaded.

Have the module keep track of the number of times the interrupt handler gets called.

Lab 2: Sharing All Interrupts

Extend the previous solution to construct a character driver that shares every possible interrupt with
already installed handliers.

The highest interrupt number you have to consider will depend on your kernel and platform; look at
/proc/interrupts to ascertain what is necessary.

Take particular carc when you call free_irq() as it is very easy o freeze your system if you are not
careful.

'The character driver can be very simple; for instance if no open() and release() methods are
specified, success is the default.

A read() on the device should return a brief report on the total number of interrupts handled for
each TRQ.

To do this you’ll also have to write a short application to retrieve and print out the data. {(Dom’s
forget to create the device node before you run the application.)

102

CHAPTER 8 INTERRUPTS AND EXCEPTIONS

Chapter 9

Modules II: Exporting, Licensing
and Dynamic Loading

We'll sce how symbols are exported from the kernel to modules and

from one module to another. We'll aJso discuss some aspects of module licensing. We'll consider

demand and dynainic k

oading and unloading of modules. We'll sce what changes are necessary in

order to make a driver part of the kernel proper instead of a module, and discuss some details of the
kernel and module build process.

9.1 Exporting Symbols e e e e e e 104
9.2 Module Licensing it 104
9.3 Automatic Loading/Unloading of Modules e e e e e e .. 106
94 Builk-inDrivers e e e e e e e 107
9.5 Kernel Building and Makefiles e e e e e e e e 109
9.6 Labs e e . 110

n2

104 CHAPTER 9. MODULES II: EXPORTING, LICENSING AND DYNAMIC LOADING
9.1 Exporting Symbols

In order for built-in kernel code to make a symbol (i.c., a variable or function) available for u(sie I)y

modules, it has to properly export it. If a module has symbols which are to be nsed by modules
¥

which arc loaded after it is, it also has to export the symbol.

"This is accomplished with the use of the EXPORT_SYMBOL{() macro:

int my_variable;

int my_export_fun Of };
EXPORT_SYMBOL(my_variable) ;
EXPORT _SYMBOL (my_export_fun) ;

Note that the symbols will be exported even if they are declared as static.

1t is also possible to export symbols with the macro:
EXPORT_SYMBOL_GPLO) ;

Exactly how this macro shounld be used and interpreted has somelimes bct?n contro.versial. Certaig}lly
it means quite literally the symbol can be exported only to modules Whllch are licensed under L.— e
GPL; e.g., it can’t be used in binary-only drivers. However, some feel it should be done only for
modules which are used internally by the kernel for basic functions.

There are some other specialized methods of export_ing gymbols:

EXPORT_PER_CPU_SYMBOL(};
EXPORT_PER_CPU_SYMBOL GPL();
EXPORT_SYMBOL_GPL_FUTURE() ;
FXPCRT_UNUSED_SYMBOL();
EXPORT_UNUSED_SYMBOL_GPL(};

Kernels earlior than the 2.6 series exported all global symbols in a module unlgss they were cl:xp}icitlﬁ
declared as static; that is one reason why you see the static keyword so liberally used in kerne
code, for the purpose of avoiding name pollution.

Note that is still makes sense to declare symbols as static; i_i" the code is compilqi as buriit—m] th‘i‘
symbols would be globally visible as the kernel is just one big program. Indeed the usual rule o
thumb is that all symbols should be declared static unless there is a need to do otherwise.

9.2 Module Licensing

Modules can be licensed with the MODULE_LICENSE() macro, as in:

MODULE_DESCRIPTION("Does Everything");
MODULE_AUTHOR{"Vandals with Handles");
MODULE_LICENSE("GPL +2");

9.2, MODULIL LICENSING 105

Besides the informational content, this macro has important consequences: Any other license causes
the entire kernel to be tainted, and warning messages appear when the module is loaded. For the
most part, any system problems, crashes etc. that arise while using a tainted kernel are most likely (o

be ignored by kernel developers. (‘'he pseado-file / proc/sys/kernel/tainted shows your kernel’s
status.)

The following licenses are understood by the kornel:

Table 9.1: Licenses

License Meaning Tainted?
GPL GNU Public License, V2 or later : No

GPL v2 GNU Public License, V2 No

GPT. and additional | GNU Public License, V2 rights and more No
rights

Dual BSD/GPL GNU Public License, V2 textbfor BSD license choice No

Dual MPL/GPL GNU Public License, V2 or Mozilla license choice No

Dual MI'T'/GPL GNU Public License, V2 or MIT license choice No
Proprietary Non free products (as in freedom, not free beer) Yes

You can sce the licenses of loaded modules with a script like:

#!/bin/bash
for names in $(cat /proc/modules | awk ’ {print $1;} *)

do eche —me "$names\t g
modinfo $names | grep license

done

e A phrase sometimes heard in the Linux kernel developer community is:

All binary modules are illegal.

e A thorough debale on this topic was held on the kernel mailing list in late 2006. (See
http:/ /lwn.net/Articles /215075 for a summary.) The main view coming out of thai,

discussion stated that binary modules could not be banned, because the GPL controls
distribution and not use of code.

» We don’t want to get into a legal discussion here, but it seems clear that whether or not
certain practices werc accepted in the past, the future trend is that it ig only going to
become more difficult to get away with binary modules.

¢ Liven if legal enforcement is not pursued vigorously, it is clear that increasing techni-
cal impediments and inefficiencies will make going proprietary more difficult and more
cxpensive if not downright impossible.

106 CHAPTER 9. MODULES II: EXPORTING, LICENSING AND DYNAMIC LOADING

9.3 Automatic Loading/Unloading of Modules

request_module():

A module may explicitly request loading of one or more other modules through:

#include <linux/kmod.h>

int request_module (constant char *name, ...)

T'he module name will be dynamically loaded (using modprobe) to.g;fatht?r with any other require;i
modules. name may be the actual name of the module or an alias specified in /etc/modprobe.conf.

T'he current process will sleep until the module is loaded.

"The additional, variable nutber of arguments to request_module () represent a formatted list in the
manner of printf (). So for example one could do:

request_module ("my-device-%d", device_number) ;

Dynamic loading can occur only in the context of a process; i.e., you 'will get errors if.you‘ ca.]l
request_module() from an interrupt handler. It must be called from a driver entry point function.

The return value of request_module() is not very useful; success implies only t,hai; the request Wa.sjf
properly executed, not that it succeeded. If you crawl through the source, you'll see an exec_() o
modprobe is requested and the error status is that reported for the exec(). Ilere the kernel actually

makes an excursion to user-space.

Note that the requesting module can not call functions in the requested module; if that were S0 i
would 1ot be able to load in the first place {due to unresolved references.) In some sense, therefore,

this function is a kind ol pre-fetch.

Demand Loading;:

A module may require other modules to be loaded in a stack. This may be accomplished either by:

¢ Loading them in the proper order with insmod.

e Toading them as a stack with modprobe. (Note that depmod must have been run previously,
and the modules to be demand-loaded must be located in a place known to depmod).

Dynamic Loading:

Often onc will want 2 module to be auto-loaded whenever its corresponding de_vice node is a,c_cessed
by an application. An example would be having the gound driver loaded every time /dev/dsp is read
or writlen to by applications.

‘T'his can be accomplished by inserting lincs in /etc/modprobe. conf of the form

9.4. BUILT-IN DRIVERS 107

alias block-major-254—* mybdrv
alias char-major-254—* mycdrv

where we have used a wildcard for the minor number. (Note the 2.4 kernel only took a major number,
and that form will still work.)

This assumes that mybdrv.ko and mycdrv.ko can be found in the path searched by depmod and
that you have accessed the device nodes with this major number. Note that the name of the device
node is invoked by the application and need not match the module name. You may also use such
names as arguments to request_module ().

Note that the use of udev has reduced the need for this technique. However, the underlying methods
are quite different. udev loads driver modules upon discovery of the device; using these aliases
leads them upon first use of the device, which should come later, at least for hardware drivers.

9.4 Built-in Drivers

Device drivers and other facilities can be Joaded cither as an integral part of the kernel, or as modules,
and many kernel components have the capability of being used either way. Inclusion in the kernel
requires kernel re-compilation of the entire kernel; modularization does not.

At most only minor changes are necessary to the code; most often none are required. However, the
kernel configuration files must deal with all three possibilities; built-in, module, or neither.

It is possible to mark both data and functions for removal after kernel initialization. "This is done
with the keywords __init and __initdata. So for example, if you have

void __init somefunc (void) { ... }

static int scome_data initdata = 1 ;

the data and code will go into a special initialization section of the kernel and be discarded after
execution. One has to be carclul that the code or data is not referenced after init starts. You may
have noticed messages to this cffect during the system boot:

{0.841689] Freeing unused kernel memory: 424k freed
The __exit macro doesn’t do much except group all such labeled material together in the executable,

in an arca not likely to be cached.

If you use the module_init(), module_exit() macros, you should be able to avoid using any
#ifdef MODULE statements in your code.

If MODULE is not defined, any function referenced by the module_exit() macro is dropped during
compilation, since buill-in drivers never get mnloaded.

In addition, the kernel arranges for automatic loading of all module_init () functions, using the
following recipe:

First, the module_init () macro in /usr/src/linux/include/linux /module.h will create a section
in the .o file named .initcall.init This section will contain the address of the module’s init
function.

108 CHAPTER 9. MODULES 1I: EXPORTING, LICENSING AND DYNAMIC LOADING 9.5. KERENEL BUILDING AND MAKEFILES

109
Thus, when all of the .o files are linked togcther, the final object file will contain a section called

attribute when defining th i s s
_initcall.init which becomes, in effect, an array of pointers to all of the init functions. g the body of the init function. This places the code in the section . text . init
* bl

which is the section that is reclaimed.
1t is possible to assign priorities to initialization calls; the code which sets this up is in Jusr/sre/linux
/include/linux /init.h: :

9.5 Kernel Building and Makefiles

2.6.31: 186 d#define pure_initcall(fn) ﬁ_define_initcall(“()“,fn,O)
2.6.31: 186 The Linux kern i1di
i ernel building process has b i
. . . C s wqn ecome quite com .
2.6.31: 187 #define core_initcall (in) __define_initcall ("1 ’fn’ii . kernel. Fortunately, using it is quite casy. It]?d plex, and was completely reworked for the 2.6
2.6.31: 188 #define core_initeall sync(fn) __define_initcall{"1s",fn,1s) /Documentation /kbui y. tull documentation can be fonnd under /usr/src/li
5 6.31: 189 #define postcore_initcall (£n) __define_initcall("2",fn,2) ion/kbuild. X
2.6.31: 190 #define postcore_initcall sync(fn) __define_initcall("2s",fn,2s) Important components include:
5.6.31: 191 #define arch_initcall(fn) __define_initcall ("3",fn,3) ”
2.6.31: 192 #define arch_initcall sync(fn) __define_initcall("3s",fn,3s) The ¢
9.6.31: 193 #define subsys_initcall(fn) __define_initcall("4",fn,4) e The top-level Makefile.
2.6.31: 194 #define subsys_initcall sync{fn) __define_initcall("4s",:En,4s) » Th .
- e configural; ; i
5.6.31: 105 #define £s_initcall(fn) define_initcall("6",fn,5) guration file, .config,
5 §.31: 196 #define fs_initcall sync(fn) __define_initcall("Bs",fn,bs) e The top-level architect
- 3 > eclure-depend i
2.6.31: 197 ftdefine rootfs_initcall(fn) #_define_initcall("rootfs“,fn,rootfs)] P ent Makefile.
2.6.31: 198 #define device_initcall{fm} __defipe_initcall{"6",in,6) s Subdirectory Makefiles.
2.6.31: 199 #define device#initcall_sync(fn) __definewinitcall(“Ss“,fn,6s) o Tn each direct ith
9.6.31: 200 #define late_initcall (fn) __defipe initcall("7",fn,7) i trectory with a Makefile, there is a file named Kconti ioh i
- g ; R i : niig, whic ‘ T
5. §.31: 20t #define late_initcall_sync{fn} __define_initcall("7s",fn,7s) kernel configuration utilities. g which interfaces with the
2.6.31: 202
2.6.31: 203 #define __initcall(fn) device imitcall (£n) The documentation that comes with the kernel does an excellent i o
2.6.31: 204 of these quantities, so we won’t try to repeat it ellent job of explaining the relationship
2.6.31: 205 #define __exitcall (fn) \ .
2.6.31: 206 static exitcall_t __exitcall ##fn __exit_call = fn Here is an example of a simple Makefile:
2.6.31: 207
2.6.31: 208 #define console_initecall{fn) \ obj-$ (CONFIG_F001) 4= fool
2.6.31: 209 static initeall t __initcall_##fn \ obj—$ (CONFTG_FOD2) - f002.3
2.6.31: 210 __used __section(.conﬁinitcall.init) = fn obj—$ (CONFIG_FO03) — fooB‘
2.6.31: 211 e
5.6.31: 212 #define security_initcall(fn) \ foo3-objs
=1 .
2.6.31: 213 static initcall t __initcall_##fn \ oo3a.o foo3b.o foolc.o
2.6.31: 214 __used __section(.security#initcall.init) = fn EXTRA_CFLAGS i

—DF00_DEBUG

so that default is priority 6. (Note that in the 2.6.19 kernel, additional sublevels such as 6s were

(Note we have .o, not .ko.)
introduced.)

As th ki ! i i
e make proceeds, three environmenial variables are constructed according (o the CONFIG_x

The routine in /usr/src/linux/init/main.c that calls all the functions is: values:
2.6.31: 787 static void __init do_initcalls{veoid) e obi-v: Those s A .
5 6.31: 788 { 1y source files to be compiled into the kernel itgelf.
2.6.31: 789 initcall_t #call; e obj~m: Those source files to be compiled i

- ; £ : compiled int 5
9.6.31; 790] P o modules.
2.6.31: 791 for (call = __early_initcall_end; call < __initcall end; call++) ¢ obj~: Those source files to be-ignored.
2.6,31: 792 do_one_initcall(*call);
2.6.31: 793 If more than one file must be compi i

mpiled a ; : .

2.6.31: 794 /+ Make sure there is no pending stuff from the initcall sequence %/ .) P nd Jinked together that is done as in the foo3-objs example
2.6.31: 795 flush_scheduled work(}; The variable EXTRA_CFLAGS can be used to augment compiler fl
2.6.31: 796 } B8

To sel e s . qeps
gel your new facility in the configuration utilities requires modifying one more file, Kconfig i
- ? g 1n

tho « N Lo :
¢ same divectory, which is written in a customized scripting language, but is easy to hack. Thi
\ ack. s

Note that in addition to using the module_init{) macro, each driver still should use the __init consists of a series of sections such as:

110 CHAPTER 9. MODULES II: EXPORTING, LICENSING AND DYNAMIC LOADING

config FOO1
bool "FOD1 Driver"
default y
help
Here is the help item on the fool driver.
config F002
tristate "FOD2 Driver™
default n
help
Here is tke help item on the foo2 driver.

T'here are other directives in this file for indicating dependencies, etc.

Slightly fancier Makefiles are required il you need to recurse through subdirectories, etc, but looking
at the examples in the kernel source gives good enough guidance.

To repeat, there are three main ingredients; the Makefile, the Keonfig file, and the source itself.

9.6 Labs

Lab 1: Stacked Modules

Write a pair of modules one of which uses a function defined in the other module.

Try loading and unloading them, nsing insmod and modprobe.

Lab 2 Duplicate Symbols

Copy your first module to another file, compile and try to load both at the same time:

$ cp labi_modulei.c labl_moduleld.c
. modify Makefile and compile

$ insmod labl_modulel.ko

$ insmod labl_modulela.ko

Does this succeed?

Install your modules with make modules_install.

See how depmod handles this by. analyzing the modules.dep file that results.

Lab 3: Dynamic Module Loading

Take your basic character driver from the previous exercise and adapt it to use dynamic loading:

Construct a trivial second module and have it dynamically Joaded during the character driver’s open ()
entry point. (Make sure the name of the file that is requested is the same as the name of your file.)

Add a small funcéion to your character driver and have it referenced by the second module.

9.6. LABS
111

Make sure you place your modules in a plac
place whore modprobe can find th i i
target modules_install will take care of this for you.) e thee, (ustalling with the

You can use either cat or the main | i
: program Irom the character driver lab to excrci
What happens if you try to request loading more than once? s your module

Lab 4: Demand Loading of Drivers
Make your character driver load upon use of the device; i.e., when you do something like

cat file > /dev/mycdrv

have the driver load.

Make the adjustments to Jetc/mod as needed £
£ probe.conf ag ne a e ei e
- 1 : . nd put the module in the proper place

112

CHAPTER 9. MODULES 1I: EXPORTING, LICENSING AND DYNAMIC LOADING

Chapter 10

Debugging Techniques

We'll consider various techniques used to debug device drivers and the
kernel. We'll discuss dissecting oops messages, and direct use of debuggers, focusing on the kdb
tool, and including kprobes. We'll also consider the use of debugfs.

10.1 00ps Messages . . v . v v vt v i e e e 113
10.2 Kernel Debuggers oo 116
1083 debugfs L 118
10.4 kprobes and jprobes, 119
105 Labs . . .o L e e 122

10.1 oops Messages

oops messages indicate that a fault occurred in kernel mode. Depending on the nature of the fault
that produced the oops, the fanll may be fatal, serious, or inconsequential.

If the oops occurs in process context the kernel will altempt to back out of the current task, probably
killing it. If it occurs in interrupt context the kernel can’t do this and will crash, as it will if it occurs
in either the idle task (pid=0) or init (pid=1).

114 CHAPTER 10. DEBUGGING TECHNIQUES

The information provided contains a dump of the processor registers at the time of the cragh and and

a call trace indicating where it failed. Sometimes this is all one may need.

and almost all kernel debugging techniques, requires

Getting the most use out of cops messages, A

having at least some familiarity with asscmbly language. For an example
oops message see http:/ /lkml.org/lkml/2008 /1/7/406.

In order to cause an oops deliberately, one can do

if (disgusting_condition)
BUG() ;

or
RUG_ON{disgusting_condition);

One can also induce a system crash while printing out a message such as:

if (fatal_condition}

panic ("I'm giving up because of task Yd\n", current->pid);

e T'he website http://www.kerneloops.org maintains a database of current oops and
has helped kernel developers debug successtully.

Here is a trivial module (crashit.c
oops message:

#include <linux/module.h>
#include <linux/init.h>

static int __init my_init (void)

{
int *i;
;r;ngé (KERN_TNFO "Hello: init module loaded at address Ox¥p\n",
init_medule);
printk (KERN_INFO "i=Yd\n", *3i);
return 0;
}

static void __exit my_exit (void)

{ D,
printk (KERN_INFC "Hello: cleanup_module loaded at address 0x%p\n",

cleanup_module};

) that contains a null pointer dereference that can trigger an

10.1. OOPS MESSAGES 115

module_init (my_init);
module_exit (my_exit);

MODULE_LICENSE ("GPL v2");

We can disassemble the code with objdump. Doing
objdump —d crashit.ko

gives

crashit.ko: file format elf32-i386

Disassembly of section .init.text:

00000000 <init_module>:

¢: 83 ec 08 sub $0x8,%esp

3: c7 44 24 04 00 00 GO movl $0x0,0x4 (Yesp)

a 00

b: c7 04 24 0O 00 00 00 movl $0x0, (fesp)

12: e8 fc ff £ff ff call 13 <init_module+0x13>
17: al 00 00 00 00 mov 0x0, feax

tc: 7 04 24 00 00 00 DO ‘movl $0%0, (Yesp)
23: 89 44 24 04 mov #eax,0x4 (fesp)

27 el fc £f ff ff call 28 <init_module+0x28>
2¢: 31 c0 : Xor Yeax, Yeax
Ze: 83 c4 08 " add $0%8, fesp
31: c3 ret

Disassembly of section .exit.text:

00000000 <cleanup_module>:

0: 83 ec 08 sub $0x8, Yesp

3: c7 44 24 04 00 00 00 movl $0x0,0x4(fesp)

a: 006

b c7 04 24 2¢ 00 00 00 movl $0x2¢c, (Yesp)

12: e8 fc ff ff ff call 13 <cleanup_modulet+{ixz13>
17: 83 c4 08 add $0x8,Yesp

la: c3 ret

We produce the oops by attempting to load crashit.ko; it hangs during the initialization step, and
produces the following oops message {which gels appended to /var/ log/messages):

Hello: init_module loaded at address Oxf8a07000
Unable to handle kernmel NULL pointer dereference at virtual address 000G0000
printing eip:
£8a07017
*pde = 00000000
Oops: 0000 [#1]
PREEMPT
Modules linked in: crashit w83627hf eeprom Im75 i%c_sensor i2c_isa
i2c¢c_ viapro i2c_dev i2c_core sunrpc binfut_misc whci_hed ehci_hed

116 CHAPTER 10. DEBUGGING TECHNIQUES

end_via82xx snd_ac87_codec snd_pcm_oss snd_mixer_oss snd_pcom snd_timer

snd_page_alloc snd_mpudll_uart snd_rawmidi snd_seq_device snd soundcore

floppy sata_promise sata.via libata

CPU: 0

ETP: 0060 [<£8a07017>] Not tainted VLI

EFLAGS: 00210296 (2.6.13)

EIP is at my_init+0x17/0x32 [crashit]

eax: 0000003f ebx: £80f9300 ecx: c045a2d8 edx: 00000001

esi: 3aa7000 edi: cO000000 ebp: e3aa7000 esp: e3aa7fdd

ds: 007b es: 007b ss: 0068

Process insmod (pid: 4628, threadinfo=e3aaf000 tagk=eaf36bb0)

Stack: £89£901c £8a0T000 0154733 cO5ledcd 00000001 £89£9300 0804a018 00000000
080489£4 c0103£f5b 0804a018 00000aal 0804a008 0000000C 08048914 bfc89888
00000080 000000TH 0000007b 00000080 fiffedld 00000073 00200246 Lfc89820

Call Trace:

[<£8a07000>] my_init+0x0/0x32 [erashit]

T<c0154733>] sys_init_module+0x193/0x290

[<c0103£5b>] sysenter_past_esp+0x54/0x75
Code: Bad EIP value.

1t combains a dump of the processor registers at the time of the crash and and a call trace indicating
where it failed. We see it failed in crashit at an offset of 0x17 bytes into my_init(). Comparing
with the object dis-assembly tells us precisely what the offending line is.

10.2 Kernel Debuggers

The first thing to understand about using debuggers on the Linux kernel is that Linus Torvalds hates

them For his entertaining explanation of why, sce http:/ /lwn.net /2000 /0914 /a/l-debugger.php3.

The short explanation for this attitude is that reliance on debuggers can encourage fixing problems
with band-aids rather than brains, and leads to rotten code.

Linus will tolerate (and even encourage) optional debugging aids that either check specific known
errors (e.g., am 1 sleeping while holding a spinlock?), or require only an entry point into the kernel,
and permit their work to be done through modules.

gdb

The gdb debugger can be used to debug a rumning kernel. The execution line would be:
$ gdb /boot/vmlinux /proc/kcore

where the first argument is the currently running uncompressed kernel. One can use ddd or another
other graphical interfaces to gdb. The sections of the kernel being debugged must bave been compiled
with the —g option, to get much useful information. This is not for the faint-hearted. Ii is pretty
difficult.

10.2. KERNEL DEBUGGERS 117

kdb

kdb is an interactive kernel debugger. It can be downloaded from http://oss.sgi.com/projects/kdb
3

and is furnished as one or more patch . . "
the ability to: patches to the kernel, which include extensive documentation. Tt has

o Lixamine kernel memory and data. structures.
o Control operations, such as single-stepping, setting breakpoints.
e Get stack tracebacks, do instruction dis-assembly., ete.

e Switch COPUs in an SMP system.
e Bic.

kdb is antomatically entered upon encounterin ;
g an oops, a data access fault in kernel 51
kdb flag on the kernel command line, or using the paus; key. el morle using &

An informative tutorial on kdb has been publi
. published by IBM DeveloperWorks; it ¢ ’
http://www.ibm.com/developerworks/linux/ library /1-kdbug/. 1 com be found at

kgdb

kgdb is another interactive kernel debugger. It originally required two computers Lo be conmected
thru.:)ugh a null-modem serial cable. On the remote host system the user runs gdb (or a. GUT WI'a:C ;

to it .su‘ch as ddd) and can then break into the kernel on the target system, selting break Ppter
examining data, etc. It is possible to stop the target machine kernel during tht’e boot ri‘ocess i

kgdb was incorporated in the mainline kernel with kernel version 2.6.26. The oft-requesied ability

to debug through a network connection exists i
; 8 in the development version, but i : i
fully and thus is not included in the mainline version. , i 8yt mot worlding

crash

The erash utility is probably provided b i istributi
; y your Linux distribution and full ation ¢
found at bttp://people.redhat.com/anderson/. el il documentation can be

V\'hli;; crash one can 'exa,mine e.),ll critical data structures in the kernel, do source code disassembly,
walk through linked lists, examine and set. memory, etc. crash can also examine kernel core duml;

files created by the kdump, diskdump and xendump packages,

118 CHAPTER 10. DEBUGGING TECHNIQUES

e 1o use crash or gdb you need a kernel which has been compil.ed with
CONFIG_DEBUG_INFO=y, and you need a copy of the uncompressed kernel, vilinux.

o If you have compiled the kernel yourself this is no problem and you will find the uncom-
pressed kernel in the main kernel source directory.

s However, if you are debugging a distributor-provided kernel, it will proba,bly r(?quire ,a
litéle more work. On RPM-based systems you will also need to insta-ll the -dlstrlbllltor 8
kernel-debuginfo package, which contains all the symbols and information stripped
from the widely distributed kernel.

10.3 decbugfs

The debugfs filesystem appeared in the 2.6.11 kernel. It can be used as a simpler and more modern
alternative to using the /proc filesystem, which has an inconvenient interface and which kernel

developers have lost their taste for.

The main purpose of debugfs is for easy access to debugging informal‘,iog, and perhaps to Sfit d‘el;lg-
ging behaviour. Tt is meant to be accessed like any other filesystem, which means standard reading

and writing tools can be used.

One can also use sysfs for the same purposes, However, sysfs is intended for inform;}tion psed n
system administration, and is also meant to be based in a coherent way on the system’s device tree

as mapped out along the system buses.

The code for debugfs was developed mainly by Greg Kroah-Hartman. The functions used are:

#include <linux/fs.h>
#include <linux/debugfs.h>

struct dentry *debugfs_create_dir (const char *name, struct dentry *parent; N
struct dentry *debugfs_create_file {const char *name, mode_t mode,‘struct entry *p. .
void *data, struct file_operations *fops);

void debugfs_remove (struct dentry *dentry);

As with /proc you can create your own entry under the del.)ugfs root directo_r.'y by cre?,ting EL ‘d}{*(?ct(;;y
with debugfs_create_dir(); supplying NULL for parent in the. al‘)ove functions places cn ries 1tn ai
root directory. The mode argument is the usual filesystem permissions mask, and data is an option
parameter that can be used to point to a private data structure.

T'he fops argument point to a file_cperations structure containing a jump table of operations on
the entry, just as it is used in character drivers. One probably needs to supply only the ownership
field, and reading and writing entry point functions.

For the read function one may want to take advantage of the function:

10.4. KPROBES AND JPROBES 119

sgize t simple_read_from_buffer (void _ user #*to, size_t count, loff_t *ppos,
const void *from, size_t available);

which is a convenience function for getling information from the kernel buffer pointed to by from into

the user bufler to (using copy_to_read () properly), where the position ppos is advanced ne further
than available bytes. An example of a read function using this:

static ssize_ %t
my_read (struct file *file, char *buf, size_t count, loff t # ppos)

{

int nbytes;

nbytes=sprintf (kstring, "%d\n", val);

return simple_read from buffer (buf, count, ppos, kstring, nbytes);
}

Fven simpler is to use are the convenience functions:

struct dentry *debugfs_create_u8 (const char *name, mode_t mode,

struct dentry #parent, u8 #val);
struct dentry #debugfs_create_ul6 (const char *name, mode_t mode,

struct dentry *parent, ulé *val);
struct dentry *debugfs_create_u32 {const char *name, mode_t mode,

struct dentry *parent, ul2 *val);
struct dentry *debugfs_create_bool {(const char *¥name, mode_t mode,

struct dentry #parent, u32 *val);

These create an entry denoted by name, under the parent directory, which is used to simply read in
and out a variable of the proper type. Note the variable is sent back and forth as a string. Thus one
can with simply one line of code (two including the header file!) create an entry!

In order to use the debugfs facility, it has to be compiled inko the kernel, and mounted:

mount -t debugfs nome /sys/kernel/debug

where any mouut point can be selected, but the directory ai, / sys/kernel/debug has been created
for this purpose if you wish to use it.

Regardless of how you create your entrics they must be removed with debugfs remove() on the
way out, because, as usual, the kernel does no garbage collection.

For a recent review of debugfs and how to use it sce http://lwn.net/Articles/334546.

10.4 kprobes and jprobes

The kprobes debugging facility (originally contributed by developers at IBM) lets you insert break-
points into a running kernel at any known address. One can examine as well as modify processor
registers, data. structures, etc,

Up to four handlers can be installed:

120 CHAPTER 10. DEBUGGING TECHNIQUIS

o The pre-handler is called just before the probed instruction is exccuted.

¢ The post-handler is called just after the probed instruction is executed, if o exception is
generated.

e The fault-handler is called whencver an exception is generated by the probed instruction.

o The break-handler is called whenever the probed instruction is being single stopped or break-
pointed. .

The basic lmetions and data structures are defined in /usr/src/linux/include /linux/kprobes.h
and /usr/src/linux/kernel /kprobes.c:

#include <linux/kprobes. h>

int register_kprobe{struct kprobe #p);
void unregister_kprobe(struct kprobe *p);

struct kprobe {
struct hlist_node hlist;

/* location of the probe point #/
kprobe_opcode_t *addr;

/* Allow user to indicate symbol name of the probe point */
char *symbol_name;

/% Dffset into the symbol */
unsigned int offset;

/# Called before addr is executed. */
kprobe“pre_handlexﬁt pre_handler;

/% Called after addr is executed, unless... */
kprobe_post_handler_t post_handler;

/% ... called if executing addr causes a fault (eg._page faﬁlt),
* Return 1 if it handied fault, otherwise kermel will see it. */
kprobe_fault_handler_t fault handler;

/* ... called if breakpoint trap occurs in probe haédler. '
% Return 1 if it handlied break, otherwise kernel will see it. */
kprobembreak_handler_t break_handler;

/* Saved opcode (which has been replaced with breakpoint) */
kprobe_opcode_t opcode;

/% copy of the original instruction */
gtruct arch_specific_insn ainsn;

};

typedef int {(*kprobe_pre_handler_ t) (struct kprobe *, struct pt_regs *)i).
typedef int (*kprobe_break_handler_t) (struct kprobe *, struct pt_regs ;

typedef . '
tzgedef int (*kprobe_fault_handler_t) (struct kprobe *, struct pt_regs *, int trapnr);

void (¥kprobe_post_handler_t) (struct kprobe #, struct pt_regs ¥, unsigned long flags});

10.4. KPROBES AND JPROBES 121

Note thal the handler functions receive a pointer to a data structure of type pt_regs, which contains
the contents of the processor registers. T'his is obviously architecture-dependent, and is detailed in
/usr/src/linux/arch/x86 /include/asm /ptrace.h.

The flags argument to the post handler is currently unused, and the traponr argument to the fault
handler gives which exception caused the fault.

In order to use kprobes, one must:

o I'ill in the kprobe data structure with pointers to supplied handler functions.

¢ Supply either the address (addr) or symbolic name (symbol_name with an optional offset)
where the probe is to be inserted.

s Call register_kprobe (), with a return value of 0 indicating successful probe insertion.

When finished one uses unregister_kprobe(), with an obvious catagtrophe being the result if one
forgets to do so.

The only remaining ingredient is to obtain the address of the probed instruction. I the symbol ig
exported, then you can merely point directly to it, as in

kp.addr = (kprobe_opcode.t *) mod_timer;

Even if the symbol is not exported you can still specify the name directly with something as simple
as

kp.symbol _name = "do_fork";

One should not set both the address and the symbol, as that will lead to an error.

The additional jprobe facility lets you easily instrument any function in the kernel. The relevent
registration and unregistration functions, and the new relevant data structure are:

int register_jprobe (struct jprobe *jp);
void unregister jprobe {struct jprobe *jp);
void jprobe_return (void);

struct jprobe {
struct kprobe kp;
kprobe_opcode_t *entry;
}

In order o use this you have to sel up a structure of type jprobe, in which the entry field points
to a [unction of the exact same prototype and arguments as the function being probed, which should
be pointed in the kp.addr field just as for kprobes.

The instrumentation function will be called every time the probed [unction is called and must exit
with the function jprobe_return(). It is called before the probed fanction.

The contents of registers and the stack are restored before the fanction exits. However, changing the
values of arguments can make a (possibly destructive) difference.

122 CHAPTER 1. DEBUGGING TECIINIQUES : 10.5. LABS

123

Does the function you are probing need to be exported to be accessible to the probe utilities?

o One can turn kprobes on and off dynamically, even while it is currently in use. To do
this you must mount the debugfs pseudo-filesystem:

Lab 4: Using debugfs.

$ mount —t debugfs nome /sys/kernel/debug Write a module that creates entries in debugfs.

First use one of the convenience functions to make just a simple one variable entry under the root

$1s -1/ hid 1/deb b , .
g8 sys/kernel/debug/kprobes debugfs filesystem, of whatever length you desire.

total O
—rW——————— 1 root root ¢ Jun 11 08:28 enabled N .)
ext create your own director, ; ies in i
-r-—r-—r-— 1 root root ¢ Jun 11 01:44 list J y and put one or more enries in it.
o By echoing 1 or 0 to enabled you can turn kprobes on and off. By looking at 1ist you
can examine all currently loaded probes.

SystemTap

While kprobes is very powerful, ils use requires a relatively low level kernel incursion. System-
Tap provides an infrastructure built on top of kprobes that simplifies writing, compiling and in-
stalling kernel modules, and gathering up useful output. The SystemTap project can be found at
http://sourceware.org/systemtap/.

10.5 Labs

Lab 1: Using kprobes
Place a kprobe at an often executed place in the kernel. A good choice would be the do_fork()
function, which is executed whenever a child process is born.
Put in simple handler functions.

Test the module by loading it and running simple commands which canse the probed instruction to
execube, such as starting a new shell with bash.

Lab 2: Using jprobes

"est the jprobes facility by instrumenting a commonly used kernel function.

Keep a counter of how many times the function is called. If you print it out each time, be carelul not
10 get overwhelmed with output.

Lab 3: Probing a module

Take an carlier module {such as a character driver) and add both kprobes and jprobes instrumen-
tation to it.

124

CHAPTER 10. DEBUGGING TECHNIQUES

Chapter 11

Timing and Timers

We'll consider the various methods Linux uses to manage time. We'll

see how jiflies are defined and used, and how delays and timing are implemented. We'll discuss
kernel timers, showing how they are wsed and how they are implemented in the Linux kerncl.
We'll also discuss the new hrtimers feature and its high resolution implementation.

1LY Jifies . . . o e e e e e 125
11.2 Time Stamp Counter 127
11.3 Inserting Delays F e e e e e e e e e F e e e e e e e e e 128
11.4 What are Dynamic Timers? e e e e e e e e e e 129
115 Timer Functions 129
11.6 Timer Implementation F e e e e e e e e e 130
11.7 High Resolution Timers e e e e e e e e 131
11.8 Using High Resolution Timers e e e e e e 132
11.9 Labs L 135

11.1 Jiffies

A coarse time measurement is given by the variable unsigned long volatile jiffies defined in
/usr/src/linux/include/linux /jiffies.h

195

126 CHAPTER 11. TIMING AND TIMERS

Before kernel 2.6.21 jiffies was simply a counter that is incremented with every timer interrupt.
However, with the the incorporation of tickless kerncls one need not keep processing timer interrupts
when the system is idle. (For full details, see http://www.lesswatts.org /projects/tickless.)

The defautt frequency is HZ = 1000 on the x86, but is configurable at compile time, within a range
of HZ=100 to HZ=1000. Thus we obtain a resolution between 10 and 1 milliseconds for the jiffies
vahie.

With HZ=1000 jiffies will overflow (and wrap) at about 50 days of uptime; if someone has been
sloppy, what will happen then is unpredictable. However, if you are writing device drivers it is unlikely
you will reach that long an uptime.

"Fo help avoid any potential problems, the jiffies value is set during boot to INITIAL_JIFFIES =
-300 HZ, which causes the value to wrap after five minutes. As a side effect you may notice that the
value of jiffies differs from the number of timer interrupts read from /proc/interrupts by the
same value. (Tickless kernels also break this equality.)

Useful macros to compare relative jiffies values are:

time_after{a,b)
time_before(a,b)
time_after_eqla,b}
time_before_eq{a,b)

where the first one is true if time a is after time b, and the second one is the inverse macro. The
other two macros also check for equality.

Note that there exists a variable named jiffies_64. On 64-bit platforms this is the same as jiffies;
on 32-bit platforms jiffies points to its lower 32 bits. Since jiffies_64 won't wrap for almost 600
million years (with HZ=1000), one need not worry about it doing so.

One has to be careful when using the 64-bit counter (on 32-bit platforms) as access to the valuc is
not atomic; to do so one needs to use

w64 get_jiffies_64(veid);

to read the value. (Note you never set a value of course.)

A number of macros are provided to convert jiffies back and forth to other ways of specifying time:

#include <linux/jiffies.h>

unsigned long timespec_to_jiffies {struct timespec ¥val);
void jiffies_to_timespec (unsigned long jiffies, struct timespec *yal);

unsigned leng timeval to_jiffies (struct timeval *val);
void jiffies_to_timeval (unsigned long jiffies, struct timeval *val);

unsigned int jiffies_to_msecs (const unsigned long 3};
unsigned int Jjiffies to_usecs (const unsigned long jJ;
unsigned long msecs_to_jiffies (const unsigned int m);
unsigned long usecs_to_jiffies (const unsigned int u);

where the timeval and timespec structures should be familiar from user-space:

11.2. TIME STAMP COUNTER 127
2

struct timeval {

long tv_sec; /* seconds *x/
long tv_usec; /* microseconds */
k;
struct timespec {
long tv_sec; /* seconds %/
. long tv_nsec; /* nanocseconds */
¥

11.2 Time Stamp Counter

For Pentium or better, x86 cpus include a 64-bit register called the time stamp counter (tsc). At

every clock signal the register is incremented; i.c i
every clock o ented; i.e., a 1 GHZ cpu would increase the register every

in pgsc.iplg,ttﬁie t;:, ca,ln l;{e use;i for high precision time measurements (in fact no higher precision can

e obtalned than the clock tick) but in order to convert to times the k

: : ‘ : : o] has to be able to determi

the clock signal [requency. This calibration can ilt 1 the Tor, oidation sme
1cy. not be built into the kernel during compilation si

a kernel may be compiled on one system and run on another. Furthermore. on %ﬂOdOg a(f;)IIJl’SHtl}(ie

clock frequency can vary conlinuously during operation. ’ TR

The macros which obtain the value of the time stamp counter are:

#include <asm/msr . h>

rdtsc (low,high);
rdtscl (low);
rdtscll (val);

ril}:e r;:sc](-)Oma,cro reads the {ull 64-bit value of the TSC and stuffs it into two 32 bis arguments
e rdtsc macro gets only the lower 32 bits. This is usuall ici]
. . . 5 y sufficient (a 2 GHZ system 1
overflow in abctut 2 seconds.) A third macro, rdtscl1(), gets the full 64-bit value and };tuffs 1‘: C.’“fl
long long, which is 64-bit on both 32- and 64-bit platforms. L e

gﬁrzﬁyﬁtkg} kcznel keeps the variable unsigned long cpu_khz, which gives the speed in kiloherty
: nd out your system’s clock speed by reading /proc/cpui i
' puinfo. Note that if h :
variable speed CPU, such as on a laptop, the speed may vary according to power statel e

,I>Iote/1?ha,t on i386 systems, the msr.h header file containing the macros does not appear under
us;tl*l 1.1;;lude. (It dqes, however, for the x86_64 platform.} To compile user-space applications

you' ei ik er have to point to the kernel headers on the compile line (with ~I/1ib/modules/$ (un .

/build/include), or explicitly include the macros: e o

#def%ne rdtsc{low,high) —-asm__ __volatile__("rdtsc" : "=a" (low), "=d" (high))
#def?ne rdtscl{low) _—asm__ __volatile__("rdtsc" : "=a" (low) j : "edx")g
ftdefine rdtscll{val) _-asm__ __volatile__("rdtse" : "=pv (val))‘ '

hese 'Lp ke sure }‘O C
I macros can a-ISO be l]Sed fIOlll user-s a.(‘,e, ma. u ,()mp]le W“_uh Opf;]llllza,tl()n (8511

The TSC is subject to drift and coordination i i
: | ’ problems in multi-CPU systems and better clock
exist. In particular recent CPU’s include a HPET (High Precision Event Timer) capaci))le Soc;ujgf;

128 CIHAPTER 11. 1TIMING AND TIMERS

high precision, up to the nanosecond level. Thus device drivers should avoid using the TSC directly

for any kind of timing measurements.

To get the current time with roughly microsecond resolution, use

#include <linux/time.h>
void do_gettimeofday (struct timeval *tv);

struct timeval {
time_t tv_sec; /* seconds #/
suseconds_t tv_usec; /* microseconds */

};

using the timeval data structure that should be familiar fr(.)m the select () fgncf:i(])lr} in gser—sp (13
The time returned by this function is measured in seconds since the Epoch, midnight on Jamary; 1,

1970.

11.3 Inserting Delays
jiffies can be used to infroduce busy waiting; i.e.,

#include <iinux/sched.h>

jifdome = jiffies + delay * HZ;
while (time_before(jiffies,jifdone)
{ ‘
/% do nothing */
}

"This is an idiotic thing to do; becanse jiffies is volatile, it is reread every tir.ne it is accessed. Thus
this loop locks the CPU during the delay {except that interrupts may be serviced.)

For short delays, one can use the following functions:

#include <linux/delay.h>

void ndelay(unsigned long nanoseconds);
void udelay(unsigned long microseconds);
void mdelay(unsigned long milliseconds);

One should not expect true nanosecond resolution for ndelay(); depending on the hardware it will
probably be closer to microseconds.

Another delaying method which does not involve busy waiting is to use the functions:

void msleep (unsigned int milliseconds); o .
unsigned long meleep_interruptible (unsigned int rilliseconds);

If msleep_interruptible() returns before the sleep has finished (because of a signal) it returns the
number of milliseconds left in the requested sleep period.

11.4 WHAT ARE DYNAMIC TIMERS? 7 129

11.4 What are Dynamic Timers?

Dynamic timers (also known as kernel timers} are nsed to delay a function’s cxecution until a
specified time interval has elapsed. The function will be run on the CPU on which it is submitted.

Because a CPU may not be immediately available when it is time to exccute the function, you are
guaranteed only that the function will not run before the timer expires; practically speaking this

means it should occur al, most a clock tick afterwards, unless some greedy high latency task has been
suspending interrupts.

While an explicit periodic scheduling function does not exist, 1 is trivial to make a (imer function
re-install itself recursively.

The function will not be run in a process context; it will run as a softirg in an atomic context.” 1'hus
one cannot do anything which can not be done at interrupt time; i.e., no transfer of data back and

forth with user-space, no memory allocation with GFP_KERNFL, no use of semaphares, etc., as these
methods can go to sleep.

11.5 Timer Functions

The important data structure and functions used by kernel timers are:

#include <linux/timer.h>

struct timer_list {
struct list_head entry;
unsigned long expires;
void (#function) (unsigned long);
unsigned long data;
struct tvec_t_base_s *base;

I

void init_timer (struct timer_list *timer);

void add_timer (struct timer_list *timer);

void mod_timer {struct timer_list *timer, unsigned long expires);
int del timer (struct timer list *timer);

int del_timer sync (struct timer list *timer);

list points to the doubly-linked cireular list of kernel timers.

expires in measured in jiffies. It is an absolule value, not a relative one.

The function to be run is passed as function() and data can be passed to it through the pointer
argument data.

init_timer () zeroes the previous and next pointers in the linked list.
add_timer() ingerts the timer into the global timer list.
mod_timer{) can be used to reset the time at which a timer expires.

del_timer() can remove a timer before it expires. It returns 1 if it deletes the timer, or 0 if it’s too
late because the timer function has already started executing. It is not necessary to call del_timer ()

CHAPTER 11. TIMING AND TIMERS
130

if the timer expires on ils own.

del_timer_sync() makes sure that upon return the timer function is not running on any CPU. It
helj;)-s avoid_ra,ce conditions and is preferable to use on SMP systems.

A timer can reinstall itself to set up a periodic timer. This can be done in cither of two ways:

init_timer(&t);
t.expires= jiffies + delay;
add_timer (&t);

or

mod_timer (&t, jiffiestdelay);

which is often done as a more compact form. Note that it is very important to reinitialize the timer
when reinstalling; mod_timer () does this under the hood.

Example:

static struct timer_list my_timer;
init_timer (4my_timer);
my_timer.function = my_function;
my_timer.expires = jiffies+ticks;
my_timer.data = lmy_data;
add_timer (§my_timer) ;

del_timer {&my_timer);

void my_function(unsigned long var)i };

11.6 Timer Implementation

The implementation of dynamic timers has to take care to two distinct tasks:

o Funciions have to be inserted in and removed from the list of timers, or have the expiration

times modified.

e Functions have o be exccuted at the proper time.

The simplest implement ; ne .
requested timer function into the list either at the tail, or in
when the kernel decides to run any scheduled timer functions,

value has expired.

intal i st i d add the newly

o to maintain one linked list of kernel timers, an _
st i some kind of sorted fashion, and then
scan the list and run those whose time

IL7. HIGH RESOLUTION TIMERS 131

However, this would be hidcously inefficient. There may be many, even thousands, of functions
whose expiration times might need to be scanned, and the kernel would be strangled by this task.

Sorting might help the scanning process, but it would be paid for by expensive insertion and deletion
operalions.

Linux has implemented a very clever method in which it actually maintains 512 doubly-linked circular
Ysts, so that the next and prev ficlds in the timer_1list struct point only within one of the lists at
any given time. Which list depends on the value of the expires field.

These lists are further partitioned into 5 groups:

Table 11.1: Timer groups

Group Ticks Time (for HZ=1000)

tvl < 256 < .256 secs

tv2 < 214 < 16.4 secs

tv3 < 270 < 17.5 mins

tvd < 270 18.6 hrs

tvh < o0 < 00 j

The tv1 group has a vector of 256 doubly-linked lists, sct up so those in the first list will expire in
the next timer tick, those in the second group will expire on the tick after that, and so on. Likewise,
the tv2-5 groups each have a vector of 64 doubly-linked lists, ordered in time groups.

Each time there is a timer tick, an index into the tv1 list of vectors is incremented by one, and the
timer functions which need to be launched are all in one doubly-linked Fst. When this index reaches
256, the function cascade_timers() gets called, which brings the first group of ¢tv2 in to replenish
tvl, the first group of tv3 in to replenish £v2, ete.

11.7 High Resolution Timers

The Linux kernel approach to dynamic timer implementation, while being quite clever and eflicient,
received a great enhancement with the addition of a new approach, gradually introduced since the
2.6.16 kernel

We begin with the observation that there are really two kind of dynarnic timers:
e Timeout functions, found primarily in networking code and device drivers, used to signal when

an event, does not happen within a specified window of time, and either a task should be dropped
or a recovery action initiated.

e Timer functions, expected to actually run within a specified latency and sequence.
Timeout functions tend to be far more numerous than timer ones, and thus in the present dynamic

timer implementation, removal of a timer before it runs is far more frequent, than actually running
the function.

132 CHAPTER 11. TIMING AND TIMERS

"Fimeout functions generally have only a weak precision requirement, while (in principle at least)
timer functions may have more stringent needs.

The original implementation works very well for timeout functions, particul-a-rly pecause it does suc.h‘
a rapid job of timer removal, since only an index look up is Tequired, and jiftfies-level accuracy is
generally fine.

The hrtimers (High Resolution Timers) APIL, introduced in the 2.6.16 kernel, is designed for dy-
namic timers actually expected to execule.

Rather than having a complex set of lists, there is only one list (per CPU} sorted by time of (;xpir.atlalll,
using & red-black tree algorithm. While insertion and removal may be somewhat slower than in l“he
original method, there will be no need for a cascade operation and there are fewer elements in the
fist.

Expiration periods for the hrtimers are be expressed in nanoseconds rather than jiffies, although
some platforms may still operate at lower resolution.

11.8 Using High Resolution Timers

The hrtimers feature reguired introduction of a new (and opaque) %:tj:nie_,t‘ which measurest té.me
with nanosecond tesolution if the particular architecture can support it. 'The internal repr('){jie]:]il alion
of ktime_t is quite different on 64-bit and 32-bit platforms and should not be monkeyed with.

Functions for dealing with this new time variable are contained in /usr/src/linux/include/linux
/ktime.h and don’t require much explanation:

#include <linux/ktime.h>

ktime_t ktime_set (const long secs, const unsigned long nsecs);
Ytime t© ktime_add (const ktime_t kti, const ktime t kE2);
ktime:t ktime_sub (const ktime_t ktl, const ktime t kt2};
ktime_t ktime_add_ns {const ktime_t kt, u6d ns);

ktime_t ktime_get (void) /* momotonic time */

Kktime_t ktime_get_real (void) /* real (wall) time */

ktime_t timespec_to_ktime (const struct timespec tspec);
ktime_t timeval_to_ktime (comst struct timeval twval);
struct timespec ktime_to_timespec (comst ktime_t kt);
struct timeval ktime_to_timeval (comst ktime t kt);

164 ktime_to_ns (const ktime t kt);

The high resolution timers are controlled with the functions defined in fusr/src/linux/include
/limux /hrtimer.h:

#incinde <linux/hrtimer.h>
void hrtimer_init (struct hrtimer *timer, clockid_t Which_clock,‘enum hrtlmeg_??de mode) ;
int hrtimer_start {struct hrtimer *timer, ktime_t time, enum hrtimer mode mode);

unsigned long hrtimer_forward(struct hrtimer #timer, ktime t now, ktime_t interval);

int hrtimer_cancel (struct hrtimer *timer);

11.8. USING HIGH RESOLUTION TIMERS 133

int hrtimer_try_to_cancel (struct hrtimer #*timer):

int hrtimer_restart(struct hrtimer *timer);

ktime_t hrtimer_get remaining (const struct hrbtimer *timer);
int hrtimer_active {const struct hrtimer *timer);

int hrtimer get_res (comst clockid_t which_clock, struct timespec *tp);
The only field in the data structure:

struct hrtimer {

struct rb_node ncde;

ktime_t expires; .

enum hrtimer_restart (*function) (struct hrtimer *);
struct hrtimer_hase *base;

};

that needs to he set by the user is function(}.

The earliest implementation of the API had a void argument to the function and also a data field in

the structure. With the current AP, one will probably want to embed the timer structure in a data
structure that can be used to pass data into the function.

This can be done with the container_of () macro as such:

static struct my_data {
struct hrtimer timer;
other data ;

}

struct timer *my_timer;

struct my_data *dat = container_of {(my_timer, struct my_data, timer);

where the first argument is a pointer to the timer structure, the second the type of structure it is
contained in, and the third is the name of the timer structure in the data structure.

The return value of the function should be HRTIMER_NORESTART for a one-shot timer, and
HRTIMER_RESTART for a recurring timer.

For the recurring case, the [unction hrtimer_forward() should be called to reset a new expiration

time before the callback function returns. The now argument should be the current time. It can be
obtained with:

struct hrtimer *timer;

ktime_t now = timer->base->get_time();

A hrtimer is initialized by hrtimer_init () and is bound to the type of clock specified by which_clock
which can be CLOCK_MONOTONIC or CLOCK_REALTIME which matches current real-world time, and can
differ if the system time is altered, such as by network time protocol daemons,

Omngce initialized the timer is lannched with brtimer start(). If mode = HRTIMER_MUDE_ABS the
argument time is absolute; il mode = BRTIMER_MODE_REL it is rclative.

134 CHAPTER 11. TIMING AND TIMERS

The function hrtimer_cancel() will wait until the timer is no lomger ?,c?;ive, and 1ts‘ [glﬁztlon is lntcylt
running on any CP'U, returning 0 if the timer has already explre:d ‘a.nd 1 1-f it was s'uccebslu J cance.z .
The hrtimer_try_to_cancel() function differs but won’t wait if the iElIl.CtIOI’I 1s-curren y 1‘111’11’2!) g,
and will return -1 in that case. A canceled timer can be restarted by calling hrtimer restart().

T'he remaining functions return the remaining time before expiration, whether the timer is currently
on the queue, and ascertain the clock resolution in nanoseconds.

Here’s an example of simple high resolution timer:

#include <linux/module.h>
#include <linux/timer.h>
#incinde <linux/init.h>
#include <linux/version.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>

static struct kt_data

{
struct hrtimer timer;
ktime_t period;

1 *data;

atatic enum hriimer_restart ktfun {(struct hrtimer *var)

{ -
ktime_t now = var—>base->get_time (); o
printk (KERN_INFQ "timer running at jiffies=41ld\n", jiffies);
hrtimer_forward (var, now, data—>period);
veturn HRTIMER_NORESTART;

}

static int __init my_init (void)

{
data = kmalloc {sizeof (*data), GFP_KERNEL);
data->period = ktime_set (1, 0); /# short period, 1 second %/
hriimer_init (&data->timer, CLOCK_REALTIME, HRTIMER_MODE_REL};
data->timer.function = ktfun; .
hrtimer_start (&data->timer, data—>period, HRTIMER_MODE_RELY;
return 0;

¥

static void __exit my_exit (void)

i
brtimer_cancel (&data->timer);
kiree (data);

¥

module_init (my_init);
module_exit (my_exit);
MODULE_LICENSE ("GPL v2");

11.9. LABS 135

11.9 Labs

Lab 1: Kernel Timers from a Character Driver
Write a driver that puts launches a kernel timer whenever a write() to the device takes place.

Pass some data to the driver and have it print out.

Have it print out the current—>pid field when the timer function is scheduled, and then again when
the function is executed.

Lab 2: Multiple Kernel Timers

Make the period in the first lab long enongh so you can issue multiple writes before the timer function
run. (Hint: you may want to save your data before running this lab.)

How many times does the function get run?

Fix the solution so multiple timers worl properly.

Lab 3: Periodic Kernel Timers

Write a module that launches a periodic kernel timer function; ie., it should re-install itself,

Lab 4: Multiple Periodic Kernel Timers

Write a module that launches two perindic kernel timer functions; i.e., they should re-install them-
selves.

One periodic sequence should be for less than 256 ticks (so it falls in the tvi vector}, and the other
should be for less than 16 K ticks (so it falls in the tv2 vector.)

Each time the timer functions execute, print out the total elapsed time since the module was loaded
(in jiffies).

For one of the functions, also read the TSC and calibrate with the CPU frequency (as read from
/proc/cpuinfo or the cpu_khz variable) to print out the elapsed time (hopefully) more accurately.

Lab 5: High Resolution Timers

Do the same things as in the previous exercise, setling up two periodic timers, but this time use the
hrtimer interface.

Lab 6: Using kprobes to get statistics.

Using kprobes, find cut how often kernel timers are deleted before they are run.

136 CHAPTER 11. TIMING AND TIMERS

Examination of the kernel source discloses that the exporied function __mod_timer(} is called every
time either add_timer () or mod_timer() is called.

You can sec how often timers are deleted by monitoring del_timer () and del_timer_sync (); how-
ever, on single processor systems, del_timer, sync() is not defined.

Timers are frequent so you'll probably won’t want to print out every {ime they are scheduled or
deleted, but say every 100 times plus final stalistics.

Ts it possible that timer deletion can be more frequent than timer scheduling?

Lab 7: Mutex Locking from a Timer.

Wrile a simple module that loads a timer and takes out a mutex and then releases it when the timer

runs.

Doing this in an interrupt handler is supposed to be illegal. Here we have a softirq context; is that
illegal too? Is this ignored, enforced, or warned against?

Lab 8: Executing a process from a timer.

Modify your [irst lab so the long period timer executes a nser process, such as wall.

Chapter 12

Race Conditions and
Synchronization Methods

We'll consider some of the methods the kernel uges to syncrhronize
and avoid race conditions. We’ll discuss atomic functions and bit operations, the use ol spinlocks,
mutexes, semaphores, and completion functions. Finally we'll see how the kernel maintains
reference counts.

12.1 Concurrency and Synchronization Methods 138
12.2 Atomic Operations e e e e s e e e e e e, 139
123 Bit Operations o0ttt it e e e 140
124 Spinlocks e e e e e vee .. 141
1256 Big Kernel Lock0t s s e 143
12.6 Mutexes L T T T 144
12,7 Semaphores e e e e 145
12.8 Completion Functions . ., 148
12.9 Reference Counts 0. e e e e e 149
12.10Labs e e e e e e e e e e e e e 150

137

138 CHAPTER 12. RACE CONDITIONS AND SYNCIIRONIZATION METHODS

12.1 Concurrency and Synchronization Methods

Kernel exceittion is asynchronous and unpredictable; interrupts oceur al any {ime, s:ysten;hca]ésP (I:?:
be entered from many different processes, and kernel threads of execution will also occupy the .

Many kernel resources can be modified in one place while being used in another. In some_cas;zs thfz) fl(;?e
paths are distinct, while in others the same code is being executﬁ)d. more th&l} once s‘:}:lmuk aneously.
Fither way data corruption is a danger as are potential race conditions including deadlock.

Such concurrency can be of two types:

i ifferent pr
e True concurrency occurs on SMP systems, when two threads of execution on diffe P
cessors simultaneously access a resource.

i 3 i - ed
s Psendo-concurrency occurs even on single processor systems, when one thread is pre-empt
or interrupted and another accesses an open resource.

i i ; let’ i arious
A variety of mechanisms can be used to ensure integrity of shared resources; let’s consider the v
methods in order of increasing overhead.

The simplest method is the use of atomic functions, which work on specially .typed ;{a,riz‘x-bles which
are essentially integers and include the usc of atomic bit operations. Atomic functions:

e Execute in one single instruction; i.e., they can not be interrupted in midmsctiream, amielé two
operations are requested simultaneously one must complete before the second can proceec.

o Can be used either in or out of process context.
s Can never go to sleep.

o Do not suspend interrupts while executing.

If more than one operation needs to be performed, one can use spinlocks; the‘S(; getj' t-h(‘elr n:;;n:
because if one altempts to take out a spinlock which is already held, the code will spin; ie.,
busy wait, until the lock is available. The spintock functions:

e Can be used either in or out of process context, but if used if’l inter_rupts, the for'ms whlcjn
temporarily block interrupts should be used when the same spinlock is referenced in process
context.

e Can block but do not go to sleep; i.e., another process can not be scheduled in.
e Can suspend interrupts while being used.

{ i ic 3 {0 permit si neous
e Havc supplemental read and write forms for the case in which one wants {o permit smmltg eo
readers, and writes are relatively rare.

12.2. ATOMIC OPERATIONS 139

If one wants the ability to go to sleep il the resource is not available {to call the scheduler and have
it yicld the CPU (o another process) one can use either mutexes (for which the basic operations are
mutex_lock() and mutex_unlock()) or semaphores, (for which the basic operations are up(} and
down().) Whenever possible mutexes should be used rather than semaphores in new code.

One should note:

o One can use mutex_lock() and down() only in process context; mutex_unlock() should not
be used from an interrupt context, while the up() functions can be be used at any time.

e The mutex_lock() and down() functions can sleep. The sleep may or may not be interruptible
by signals, depending on the form used.

o Inlerrupts are not suspended by these functions.
¢ Like spinlocks, the semaphore functions also have supplemental read and write forms for the

case in which one wants to permit simultaneous readers when writing is relatively rare.

As an alternative, completion functions can be used in place of semaphores in the case where
contention is expected to be high.

The kernel also employs the seqlock() mechanism, used when one often has to read a value which is
rarely changed, and for which speed is essential.

Another method for similar situations is RCU (for Read-Copy-Update), which can lead to great
performance boosts.

Exactly which mechanism should be used depends on:

e Whether contention is expected to be high or low.

e Whether one is in or out of process context.

* How many operations have to be performed while the lock is held.
o Whether slecping is permissible.

* How often the lock needs to be taken.

For [requent operations, one would generally pick the one with the lowest overhead which fits the
other requirements.

12.2 Atomic Operations

Atomic functions (many of which are macros) are completed as one single instruction and work on
a variable of type atomic_t, which is a structure defined as

typedef struct {
volatile int counter;
} atomic_t;

146 CHAPTER 12. RACE CONDITIONS AND SYNCHRONIZATION METHODS

Using a structure helps prevent mixing up atomic variables with normsl integers as you can’l use
atomic functions on integers and vice versa without explicit casting,.

These in-line macros and functions are SMP-sale and depend on the architecture:

#include <asm/atomic.h>

#define ATOMIC_INIT(i) {(3) }
#define atomic_read(v) ((¥)->counter)
#define atomic_set{v,i) (((v)->counter) = (i))

void atomic_add (int i, atomic_t *v);
void atomic_sub (imt i, atomic_t #v);
void atomic_inc {atomic_t *v);
void atomic_dec (atomic_t *v);

int atomic_dec_and_test (atomic_t *v);

int atomic_inc_and_test_greater zero {atomic_t *v);
int atomic_sub_and test (int i, atomic_t *Vv);

int atomic_add negative (int i, atomic_t *v);

int atomic_sub_return {(int i, atomic_t *v);

int atomic_add_return (int i, atomic_t *v);

int atomic_inc_return (int i, atomic_t *v);

int atomic_dec_return {int i, atomic_t *v);

Note that the ATOMIC_INIT(}, atomic_read(), and atomic_set {) macros are automatically atomic
since they just read a value.

On 64-bit platforms there are also a 64-bit atomic type and associated functions, such as void
atomic64_inc{atomic64_t *v). You can see the appropriate header file for details. :

12.3 Bit Operations

In order to examine and modify individual bits in various flag and lock variables therc are a number
of atomic bit operation functions provided by the kernel.

"I'hese are accomplished through a single machine operation and thus are very fast; on most platforms
this can be done without disabling interTupts.

The functions, not surprisingly, differ somewhat according to architecture. They are defined in
/Jusr/sre/linux/arch /x86/include/asm /bitops.h:

#include <asm/bitops.h>

yoid set_bit (int nr, volatile unsigned long *addr) ;
void clear_bit (int nr, volatile unsigned long *addr);
void change_bit (int nr, volatile unsigned long *addr);
int test_bit (int nr, volatile unsigned long *addr) ;
int test_and_set _bit (int nr, volatile unsigned long *addr);

int test and_clear_bit (int nr, volatile umsigned long *addr) ;
int test_and_change_bit (int nr, volatile unsigned long *addr) ;

12.4. SPINLOCKS 141

long find first_zero_bit (const umsigned long *addr, unsigned long size);
long f%nd_ngxt_zeroubit (const unsigned lomng *addr, long size, long offs;t)'
lomg find first_bit (const unsigned long *addr, unsigned long size}; ,

unsigned long ffz (unsigned long word);
unsigned long ffs (int x);
unsigned long fls (int x);

}? these functions the ty.pe of nr depends on the architecture; for 32-bit x86 it is juost an integer
The secqn.d argument p.omts to the variable in which bits are going to be examined or modified It’s.
type varies among architectures, usually being volatile unsigned long *. -

The test_ functions give the previous bit value as their return value.

There also exist a set of non-atomic bil functions, which differ from the above by being prefixed

with __; e.g., __set_bit(). These can be used
: __set_ . : sed when locks are already taken out i ity i
assured, and are somewhat faster than (he atomic versions. Y e and integrity s

12.4 Spinlocks

A spinlock is a mechanism for jecti ; :
S prolecting critical sections of code. Tt will spi 3 .
resource to be available, and not go to sleep. will spin while waiting for a

One can protect the same code section [rom executing on more than one CPU, but more generally

one profects simultaneous access to the same resource, whi i
2 PIC it _ . which may be touched by differing ¢
which in addition, may be in or out of process context. y B oode paths,

ri}})li'nlocks were important only on multi-processor systems before kernel preemption was included
1ls W;.Sh becanse on SMP systeﬂ}s two CPUs can try to access a critical section of code simultane:
ously. Thus before kernel preemption was incorporated in the 2.6 kernel, on single processor systems
= 1

spinfocks were defined as no-ops. However, with a i
' 5. 3 presmptible, hyper-thre i- ‘
spinlocks are always operative, ’ i roaded, or multi-core systo,

Tll}e mAcros in / usr Jsre/ l.inux /arch/x86/include/asm/spinlock.h (included from Jusr/sre
/linux / 1nclud(‘a /linux/spinlock.h, when on an SMP system) contain the basic code for spinlock
In the simplest invocation you have something like: Y ”

spinlock_t my_lock;
spin_lock_init (&my_lock);

spin._lock(kmy_lock);
...... critical code
spin_unlock (&my_lock);

'1.‘hjs guarantees the code touching the critical resource can’t be run on more than one processor
simultaneously, and d_oes nothing on a single processor system with a non-preemplable kernel. How-
ever, the above functions should not be used oul of process context (i.e., in interrupt handlers) as

th y y sC d C}(S i &t cas (S 5] r/src l ocume. '; ! on l] IIN: 1
ey may cau eadl() in t.-]l 3C. s us 1nux D
' - L) / / / / TH- AL /S 111 kS. xt fOI'

Often one wants to suspend, or disable, interrupt handling at the same time. In this case one does:

142 CHAPTER 12. RACE CONDITIONS AND SYNCHRONIZATION METHODS

unsigned long flags;
spinlock_t my_lock;

spin_lock_init (¥my_lock);

spin_lock_irgsave(&my_lock,flags);
...... critical code
spinmunlock_irqrestore(&my_lock,flags);

On single processor systems, this is not a no-op, as the interrupt disabling and restoring still goes on,
and as mentioned these Functions should be used when out of process-context. These functions take
more time than the above “irg-less” versions.

Note that the disabling of interrupls occurs only on the current processor; other CPUs are free o
handle interrupts while the lock is held.

There also exists the somewhat faster functions:

spin_lock_irq(fmy_lock);
spin_unlock_irq(&my_lock);

the difference being that the original mask of enabled interrupts is not saved, and all interrupts are
restored in the unlocking operation. This is dangerous (an interrupt may have been disabled) and
generally these functions should not be used.

There are also reader and writer spinlock functions; with these there can be more than one reader
in a critical region, but in order to make changes an exclusive write lock must be invoked. In other
words, read lock blocks only a write lock, while a write lock blocks everyone. Examples would be:

unsigned long flags;
rwlock_t my_lock;
rw_lock_init (&my_lock);

read_lock_irgsave{&my_lock,flags);
...... critical code , reads only-
read_unlock_irgrestore (gmy_lock,flags);

write_lock_irgsave (&my_lock,flags);
...... critical code , exclusive read and write access
write_unlock_irgrestore (dmy_lock,flags);

"T'here are also faster “irq-less” versions of these calls for non-interrupt contexts.

These locks [avor readers over writers; i.e., if a writer is waiting for a lock and more readers come
they will get first access. This can cause writer starvation and helped motivate the development

and use of seqlocks.
There are a lew other spinlock functions:
spin_unlock_wait(spinlock t #lock);

int spin_is_locked(spinlock t *lock);
int spin_trylock(spinlock t *lock};

125, BIG KERNEL LOCK 143

spin_unlock_wait () waits until the spinlock is free.
spin_is_locked() rcturns 1 if the spinlock is set.

spin_trylock() returns 1 if it got the lock; otherwise it returns with 0; L.e., it is a non-blocking call

12.5 Big Kernel Lock

One locking mechanism used abundantly through i i i
ghout the Linux kernel is the so-
Lock, or BKL. It is invoked simply with 1o so-called Blg Kornel

lock_kernel ();

critical code

mlock_kernel();

'1.he BKI was (')riginally a normal spinlock with widespread usage. As such, it is a relic of earlier
times when locking was very coarse-grained.

H(.)wever, in the 2.6.11 kernel the BKL was converled to a semaphore and really should be cailed the
Big Kernel Semaphore. As a result it differs in two ways from other locking mechanisms:

e It can be applied recursively within a given thread.

e Sleeping is permitted while holding the BKL:; it is rcleased when sleep begins and grabbed

again upon awakening.

Furthermore, wi!;.h kerne_zl preemption turned on it is possible to also tirn on BKL preemption as a
kernel configuration option through kernel version 2.6.24; after that it is automatically done.

Newcomers are sometimes confused by code like:

lock_kernel();
;éiémlock(&my_lock);
ééiéuunlock(&my_lock);
ﬁgiéck_kernel();

in which a finer-grained lock is nested within the BKI. The confusion arises because of not under-

standing that all spinlocks are advisory; i.e., they only are effective when code examines a lock
status. They are not mandatory locks.

There is an ongoing efforl to exterminate almost all instances of the BKL, as its promiscuous use

leads to a lot of bottlenecks when code that in no way interacts with other code takes the BKL and
suspends the other code.

144 CHAPTER 12. RACE CONDITIONS AND SYNCHRONIZATION METHODS

Minimizing the use of the BKL is tedious. Pach removal requires careful examination and testing
against unanticipated side ellects, but it is a necessary chore to accomplish on the way to fully fine-
grained locking. Removal involves replacing it with appropriate and narrow locking mechanisms for
each particular purpose.

Most likely the BKT. will not disappear completely; rather it will be retained for some critical
functions, especially for ones where time of exccution is not critical, such as loading modules, system
start up, etc.

12.6 Mutexes

A mutex {mutual exclusion object) is a basic kind of sleepable locking mechanism. While spinloc}%
are also a kind of mutex, they do not permit sleeping.

The elementary data structure is defined in /usr/src/linux/include/linux/mutex.h;

#include <linux/mutex.h>

struct mutex {

atomic_t count;
spinlock _t wait_lock;
struct list_head wait list;

+;

and is meant to be used opaquely. If count is 1, the mutex is free, if it is 0 it is locked, and if it is
negative, il is locked and processes are waiting.

Mutexes are initialized in an unlocked state with
DEFINE_MUTFX (name);
al compile time or

void mutex_init {struct mutex *lock};

at Tun time.

The locking primitives come in uninterruptible and interruptible forms but with only one unlocking
function:

void mutex_lock (struct mutex *lock);
int mutex_lock_interruptible {struct mutex ¥lock};
int mutex_lock killable (struct mutex #*lock);

void mutex_unlock (struct mutex *lock);

Any signal will break a lock taken out with mutex_lock_interruptible() while only a fatal signal
will break one taken out with mitex_lock_killable(). Locks taken out by mutex_lock{) are not

affected by signals.

There are some important restrictions on the use of mutexes:

12.7. SEMAPHORES

¢ The mutex must be released by the original owner.
e The mutex can not be applied recursively.
s The mriex can not be locked or unlocked from interrupt context.
Note however, that violation of these restrictions will not be d i .
) 2 etected with, s i
configured into the kernel. orod without mutex: debugging

Th(.: owner of the mutex is the task in whose context the mutex is taken out. If that task is no jonger
active another task may release the mutex without triggering debugging warnings,

A non-blocking attempt to get the lock can be made with

int mutex_tryleck (struct mutex *lock);
and
int mutex_is locked (struct mutex *lock);

checks the state of the lock.

O lh}lt mutex_tr leCk() IGtuIHS 1 lf it Obtcl]IlS the IOCk n Lo SplIl tr VIOCk aIl(i "“h
N fe —_ ﬂukl L
()] —_ () ke

There are no spem-a.l reader/writer mutexes such as there are for other exclusion devices such as
semaphores and spinlocks.

12.7 Semaphores

It is also possible to use counting semaphores to protect critical sections of code. These work on
data structures of lype semaphore and rw_semaphore.

‘The basic functions (defined ag racros) can be found in Jusr/sre/li . .
inux/include/li -
phore.h, and /usr/src/linux/include/linux /rwsem.h: / / /linux /sema

#include <asm/semaphore.h>

void down (struct semaphore *sem);

int down_interruptible (struct semaphore *sem);
int down_trylock (struct semaphore *gem);

void up (struct semaphore *sem);

void down_read {struct rw_semaphore *sem);
void down_write (struct rw_semaphore *sem);
void up.read (struct rw_semaphore ¥sem);
void up_write {(struct rw_semaphore *sem);

struct semaphore {
atomic_t count;
int sleepers;

CHAPTER 12. RACE CONDITIONS AND SYNCHRONIZATION METHODS 12.7. SEMAPHORES a7

146
wait_queue_head t wait; void sema_init (struct semaphore *sem, int val);
_ - _ H
};
struct rw_semaphore { and is often initialized with the following inline convenience fimetions:
signed long count;
spinlock_t wait_lock;
struct list_head wait_list; static inline void init MUTEX (struct semaphore #sem){
¥; sema_init(sem, 1);
! .

}
static inline void init MUTEK_LOCKED (struct semaphore *sem){

The down () function checks to see il someone else has already entered the critical code section; if the romn dnit (oo 31

value of the semaphore is greater than zero, it decrements it and returns. If it is already zero, it will
sleep and try again later.

"T'he down_interruptible () funciion differs in that it can be interrnpted by a gignal; the othe‘r for
blocks any signals to the process, and should be nsed only with great caution. H(.)wever, you will no
have to check to see if a signal arrived if you use this form, so you'll have code like:

}

s Historically, semaphores have more often been used as binary mutexes rather than as
counters.

! i ib & t ~FRESTARTSYS)
if (down_interruptible(&sem)) return » A semaphore may be more difficult to debug than a mutex in that it can have more than

s P one owner at a time.
which tells the system to cither retry the system call or return ~EINTR to the application; which it

does depends on how the system is sel np. * Any new code should use mutexes unless the counting capability of semaphores is really

. . needed. The migration of most existing semaphores to mutexes is gradually and carefall
The down_trylock() form checks if the semaphore is available, and .If not returns, and is ﬂllus a being done. g y v
non-blocking down function (which is why it doesn’t need an interruptible form.) Tt returns 0 if the

lock is obtained. Tor instance, a typical read entry from a driver might contain:

|

a An example, culled from /usr/src/linux /kernel /sys.c:
if (file—>f_flags & 0_NONBLOCK) {
if (down_trylock{kiosem))

return ~EAGAIN; P
2.6.31:1116 DECLARE_RWSEM{uts_sem);

} else
if (down_interruptible(&iosem))
return -ERESTARTSYS; -31:1129 SYSCALL _DEFINEZ(sethostname, cher __user *, name, int, len)
} .31:1130 {
.31:1131 int errno;

.31:1132 char twp[__NEW_UTS_LEN];

.31:1133

.31:1134 if (Ycapable (CAP_SYS_ADMIN))

.31:1135 return -EPERM;

.31:1138 if (len < 0 || len > __NEW_UTS_LEN)
.31:1137 return —-EINVAL;

.31:1138 down_write(futs_sem);

.31:1139 errno = -EFAULT;

.31:1140 if (!copy_from_user(tmp, name, len)) {
.31:1141 struct new utsname %u = utsname();
.31:1142

.31:1143 memcpy (u->nodename, tmp, len);
.31:1144 memset (u->nodename + len, O, sizeof (u->nodename) - len);
,31:11456 errno = 0;

.31:1146 }

.31:1147 up_write(&uts_sem);

.31:1148 return errnoc;

.31:114% 1

The up ()} function increments the semaphore value, waking up any processes waiting on the semaphore.
1t doesn't require any _interruptible form.

The read, write lorms give finer control, permitting more than one reader to access the protected
resource, but only one wrifer.

You have to be careful with semaphores; you can’t lower them anywhere where sleepi'ng would l?e
very bad (such as in an interrupt routine) and yon have to think things through carefully to avoid

race conditions.

Semaphores may be declared and initialized with the following macros:

DECLARE_MUTEX (name) ;
DECLARE_RWSEM(name) ;

f\)!\JE\J!\JMMK\JI\JM!\JMMMMMMMNMMM-
mmmmmmmmmammmmmfmmb}bdm:

where name is an objecl of type structsemaphore.

The value of the semaphore can be directly manipulated with the inline function:

148 CHAPIER 12. RACE CONDITIONS AND SYNCHRONIZATION METHODS

2.6.31:1153 SYSCALL _DEFINE2{gethostname, char __user *, name, int, len)
2.6.31:1164 {

2.6.31:1165 int i, errno;

2.6.31:1156 struct new_utsname %u;

2.6.31:1167

2.6.31:1158 if {lem < 0)

2.6.31:1169 return -EINVAL;

2.6.31:1160 down_read(&uts_sem) ;

2.6.31:1161 u = utsname();

2.6.31:1162 i = %1 + strien(u->nodename);
2.6.31:1163 if (i > len)

2.6.31:1164 i = len;

2.6.31:1166 errno = 0Q;

2.6.31:1166 if (copy_to_user{name, u->nodename, i)}
2.6.31:1167 errno = —EFAULT;

2.6.31:1168 up_read(&uts_sem);

2.6.31:1169 return errno;

2.6.31:1170 }

Kerhel Kerpnk
Yersion Version
Hole Nole

o As of kernel 2.6.26 the effort to remove as many semaphores as p(fssible has a,cceler?,tfed.
It is possible they will be removed altogether at some point, with the last remaining
cases converted to the completion APL

o As part of this effort, the architecture-dependent code is being replaced with generic C
code, which reduces the code base.

o In kernel 2.6.26 the type of the count field in the semaphore structure was changed to
unsigned int.

12.8 Completion Functions

The completion functions give an alternative method of waiting for events Lo take place, and are
meant to be used in place of semaphores in some places.

This APT is optimized to work in the case of contention, while gemaphores are optimized to work in
the case of non-contention, and thus is somewhat more efficient.

#include <linux/completion.h>

struct completion {

12.9. REFERENCE COUNTS 149

unsigned int done;
wait_queue_head t wait;

};

void init_completion (struct completion *c);
void wait“for_completion {struct completion #c);

int wait_for completion_interruptible (struct completion *c¢);
void complete (struct completion #c);

void complete_and_exit (struct completion *c, long code);

unsigned long wait_for_completion_timeout (struct completion *c, unsigned long timeout);
unsigned long wait for_completion_interruptible_timeout (struct completion *c,

unsigned long timeout);

Note the versions with timeout in their name will return without & wake up call if the expiration

period is reached without one. Both these and the non-interruptible forms have non-void return
values and need to be checked.

The completion structure can be declared and initialized in either of two ways:

DECLARE_COMPLETION (x) ;

struct completion x;
init_completion(&x);

The complete_and_exit () function doesn’t return if successtul, takes an additional argument, code,
which is the exit code for the kernel thread which is terminating. Obviously, this Iunction shonld
only be used in cases such as terminating a background thread, as it will kill whatever it is doing.

The correspondence with semaphores is very simple; there is a one to onc mapping between the
methods:

struct semaphore <-—-> struct completion

sema_init{) <-—=> init_completion
down () <———> wait_for_completion()
up() <—=> complete()

12.9 Reference Counts

One often needs to maintain a reference counter for an object, such as a data structure. Tf a resource

is used in more than one place and passed to various subsystems, such a reference count is probably
required.

The kref APT should be used for maintaining such reference counts, rather than having them con-
structed by hand. The relevant functions are defined in /usr/src/linux/include/ linux/kref.h:

struct kref {
atomic_t refcount;

b

150 CHAPTER 12. RACE CONDITIONS AND SYNCHRONIZATION METHODS

void kref_init (struct kref xkref);

void kref_set (struct kref #kref, int num);

void kref_get ({(struct kref #kref);

int kref put (struct kref *kref, void (#release) (struct kref skref));

It is presumed that the kref structure is embedded in a data structure you are using, which can be
the object you are reference counting, as in:

struct my_dev_data {
struct kref my_refcount;

1}

One must initialize with kref_init(), and can increment the reference count with kref_get (0.

Decrementing the reference count is done with kref_put () and if the reference count gocs to zero
the function referred to in the second argument to kref_put() is called. "T'his may not be NULL or
just kfree() (which is explicitly checked for.) This is likely to be something like this:

struct my_dev_data *md;
¥ref_put (md->my_refcount, my._release);

static void my_release (struct kref *kr){
struct my _dev_data *md = container_of (kr, struct my_dev_data, myﬁrefcount);
my_dev_free(nd);

¥

where one does whatever is necessary in my_dev_free to free up any memory and other resources.

Note the use of the container_of () macro, which does pointer arithmetic; its first argument is the
pointer we are given, the second the type of structure it is embedded in, and the third is its name in
that structure. The result returncd is a pointer to that structure.

A good guide to using kernel reference counts can be found in Jusr /sre/linux /Documentation
Jkreftxt.

12.10 Labs

Lab 1: Semaphore Contention
Write three simple modules where the second and third one use a variable exported from the first
one. The second and third one can be identical; just give them different names.
Hint: You can use the macro __stringify(KBUILD_MODNAME) to print oub the module name.
You can implement this by making small modifications to your results from the modules exercise.

The exported variable should be a semaphore. Have the first module initialize it in the unlocked
state.

!
12.10. LABS
151

Thiz second (third) module should attempt to lock the semaphore, and if it is locked, fail to load:
make sure you return the appropriate value from your initialization function. ’ ’

Malke sure you relcase the semaphore in your cleanup function,

Test by trying to load both modules simultaneonsly, and see if it is possible. Make sure you can

load one of the modules after the ot a8
proporly. e other has been unloaded, to make sure you released the semaphore

Lab 2: Mutex Contention

Now do the same thing using mutexes instead of scmaphores,

Lab 3: Mutex Unlocking from an Interrupt.

Modify the simple interrupt sharing ! , .
Hondlor. P pi sharing lab to have a mutex taken out and then released in the interrupt

This is supposed to be illegal. Is this ignored, enforced, or warned against? Why?

152

CHAPTER 12. RACE CONDITIONS AND SYNCHRONIZATT ON METHODS

Chapter 13

ioctls

We'll consider the ioctl method (I/O Control) which is a grab bag

which can be used in many different ways for applications to communicate with device drivers. We
discuss whal ioctl’s are, how they are called, and how to write driver entry points for them.

13.1 What aredoctls? 153
13.2 Driver Entry point forioctls 154
183 Lockless foctls, +.... 1558
13.4 Defining ioctls e e e e e 156
135 Labs oo e e e e 158

13.1 What are ioctls?

ioctl’s (input output control} are special functions which are unique to a device or class of device.
ioctl () is both a call from user-space, as well ag a driver entry point (i.e., like write(), read(),
ete.)

Various commands can be implemented which either send to or receive information from a device.
One can control device driver behaviour; i.e, shutdown, reset and modify. One can send out-of-band
messages even while reads and writes are pending,

iRk

154 CHAPTER 13. TOCTLS

Excessive use of ioctls is not favored by Linux kernel developers, as by their very nature they can
be used to do almost anything, including adding what are essentially new system calls.

To use ioctl’s, one has to first open a device using the open() system call, and then send the
appropriate loctl() command and any necessary arguments.
#include <sys/iocctl.h>

int ioctl(int fd, int command, ...J};

The third argument is usually written as char *argp. The use of the dots usually means a variable
number of arguments. Here il indicates that type checking should not be done on the argument, so
we are utilizing a trick. You shouldn’t pass more than three arguments o the ioctl () call

On success 0 is returned, and on error -1 is returned with errno set. The possible error returns are:

Table 13.1: ioctl() return values

Value Meaning

EBADF Bad file descriptor.

File descriptor not associated with a character special device, or the

ENOTTY
request does not apply to the kind of object the file descriptor refer-
ences.
EINVAL Invalid command or argp.
Example:

int fd = open ("/dev/mydrvr", O_RDWR);

if (ioctl{ f£d, MYDRVR_SET, puf) < 0)
perror{ "MYDRVR_SET ioctl failed" J};

13.2 Driver Entry point for ioctls
"I'he entry point for ioctl() looks like:

#include <linux/ioctl.h>

static int mydrvr_ioctl (struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg);

13.8. LOCKLESS 10CTLS 1
55

z&};};erpi Oal;rg can i)e .usE}(: djr;,ctly cither as a long or a pointer in user-space. In the latter case
er way fo is though the put_us %y
functions. gh the put_user(), get_user(), copy_to_user(), copy_from_user()

Example:

static int mydrvr_ioctl (struct inode #inode, struct file *file unsigned int d
i C]
. unsigned long arg) ’ e
if (_IOC_TYPE(cmd) != MYDRBASE)
return (-EINVAL);

switch (cmd) {

case MYDRVR _RESET :
/% do something #*/
return 0;

case MYDRVR _OFFLINE :
/* do something */
return 0;

case MYDRVR_GETSTATE :

if (COPS’mtO_llSGI ((UOid *)aI > S1zZed V. =3 S
g &mYdrvx state_struct i f + 1 t
) > (mydI' Ir_ ate ruc)})
return 0;

default:
return -EINVAL;
}

13.3 Lockless ioctls

Normal ioct1 () calls operate under the BKL (Bi i
; ig Kernel Lock d y b i
can canuse large latencies in polentially unrelated areas,) wal i they take a long time to run

The ioctl() system call passes th .]))
/65 fiovthe: passes through sys_ioct1 (), which calls vf=_ioctl() in [usr /sre/Hnux

2.6.31: 37 static long vfs_ioctl{struct file *#filp, unsigned int cmd
2.6.31: 38 unsipgned long arg) ’
2.6.31: 39 {

2.6.31: 40 int error = -ENOTTY;

2.6.31: 41

2.6.31: 42 if (1£ilp—>f_op)

2.6.31: 43 . goto out;

2.6.31: 44

2.6.31: 45 if (£ilp->f_op->unlocked_ioctl) {

2.6.31: 46 error = filp~>f op->unlocked_ioctl(filp, cmd, arg);
2,6.31: 47 if (error == -ENOIOCTLCMD) l

156 CHAPTER 13. TOCTLS

.31: 48 error = —EINVAL;

31: 49 goto out;

.31: 50 } else if (filp—>f op—>ioctl) {

.31: 51 lock_kernel();)
.31: b2 error = filp—>fﬁopm>ioctl(filp—>fﬁpath.dentry—>d_1node,
.31: B3 filp, cmd, arg);

.31: b4 unlock kernel(};

.31: Bb ¥

.31: 56

.31: BY out:

.31: b8 return error;

.31: 5%}

RN NN NN b N
- N - = S - N

which shows that if the method
long unlocked_ioctl (struct file #filp, unsigned int cmd, unsigned long arg);

is defined, it will supersede the unlocked variety.

Note, however, the BKL is allowed to sleep unlike other locks and thus joining a waib queue_is not
enough to bottle up the system; you actually have to do some work which takes some CPU ifime to
do so.

ATl new kerncl code should use the lockless call, introduced in kernel 2.6.11, and old code should
gradually be converted unless there is a known and good reagson to take out the BKL.

e An active project is going underway to move the BKL out of the. in'nar(‘is of the system
call and into the particular drivers with the goa! of one-by-one elimination.

o 1t also should be noted that ioct1() is not the only entry point that ta.kes.; ogti the BKL
in character drivers; in particular so do open(} and £sync(}. Anf)ther project is ongoing
to eliminate the BKL from all of these entry points unless there is a true need for them. |

L

13.4 Delfining ioctls

Before using ioct1() one must choose the numbers corresponding to the inleger command argument.
Just picking arbitrary numbers is a bad idea; they ghould be unique across the system.

There are ab least two ways errors could arise:

e Two device nodes may have the same major number.

e An application could make a mistake, opening more than one device and mixing up the iile
descriptors, thereby sending the right command to the wrong device.

Results might be catastrophic and even damage hardware.

13.4 DEFINING IOCTLS 1

Two important files are /usr/src/linux/include/ asm-generic/ioctLh and
/usr/src/linux/Documentation /ioctl-number. txt.

In the present implementation command is 32 bits long; the command is in the lower 16 bits
was the old size.) There are four bit-ficlds:

Table 13.3: ioctl() command bit fields

Bits | Name Meaning Description

8 _IOC_TYPEBITS | type magic number to be used throughout the driver
8 _IOC_NRBITS number the sequential mrmber

14 _I0C_SIZEBITS | size ol the data transfer

2 _TOC_DIRBITS | direction of the data transfer

The direction can be one of the following:

_IOC_NONE
_TOC_READ
_IGC_WRITE
_IOC_READ | _TOC_WRITE

and is seen from the point of view of the application.

The size and direction information can be used to simplily sending data back and forth between
user-space and kernel-space, using arg as a pointer. Note there is no enforcement here; you can send
information either way no matter what direction is used to define the command. The largest transfer
you can set up this way is 16 KB, since you have only 14 bits available to encode the size.

You are not required to pay attention to the split u

p of the bits in the command, but it is a good
idea to do so.

Useful macros:
I'mcode the ioctl number:

_I0{ type, number)

. _ICR{ type, mmber, size)

_I0W{ type, number, size)
_I0WR(type, number, size)

One has to be careful about how the parameter size is used. Rather than passing an integer, one
passes the actual data structure, which then gots a sizeof () primitive applied to it; c.g.,

7

{which

158 CHAPTER 13. 10CTLS
MY_IOCTL = _IOWR(’k’, 1, struct my_data_structure);

This won’t work if my_data_structure has been allocated dynamically, as in that case sizeof ()
will return the size of the pointer.

Decode the ioct] number:

_IDC_DIR(cmd)

_I0C_TYPE{cmd)

_I0C_NR(cmd)
_I0C_STZE(cmd)

Example:
#define MYDRBASE ’k’
#define MYDR_RESET _TO(MYDRBASE, 1)

#define MYDR_STOP _IO{ WMYDRBASE, 2)
#define MYDR_READ _IDR(MYDRBASE, 2, my_data_buffer)

13.5 Labs

Lab 1: Using ioctl’s to pass data

Write a simple module that uses the ioctl directional information to pass a data buffer of fixed. siz
back and forth between the driver and the user-space program.

"'he size and direction(s) of the data transfer should be encoded in the command number.

You’ll need to write a user-space application to test this.

Lab 2: Using ioct’s to pass data of variable length.

Extend the previous exercise to send a buffer whose length is determined at run time. You will
probably need to use the _I0C macro directly in the user-space program. (See linux/ioctl.h.}

Lab 3: Using ioctl’s to send signals.

T is sometimes desirable to send a signal to an application from within the kernel. The tunction for
doing this is: ‘

int send_sig (int signal, struct task struct *tsk, int privl;

where signal is the signal to send, tsk points to the task structure corresponding to the process to
which the signal should be sent, and priv indicates the privilege level (0 for user applications, 1 for
the kernel.)

Write a character driver that has three jioctl commands:

13.5. LABS

» Set the process ID to which signals shonld be sent.
o Set the signal which should be sent.
® Send the signal.

You'll also have to develop the sending program.

o If given no arguments it should send SIGKILL to the current process

e If given one argument it should set the process ID to send signals o

¢ Il given two arguments it should also set the signal.

159

160

&

CHAPTER 13. IOCTLS

Chapter 14

The proc Filesystem

PrLb L I

14.1 What is the proc Filesystem? 161
14.2 Creating Entries 162
14.3 Reading Entries ., F e e e e e e e e e et e e e e e e e e e 163
14.4 Writing Enfries e 164
14.5 TheseqfileInterface v . 165
14.6 Labs L e 167

14.1 What is the proc Filesystem?

'The proc filesystem is a pseudo-filesystem; it exists only in memory and is mounted on an empty
/proc directory. Information in the proc filesystem are generated only when it is accessed; it is not
continually updated.

Entries in proc can be used to obtain information about the system (and device drivers) when read.
Writing to entries can sel system parameters and modify device functionality,

1A/1

We'll discuss the proc pseudo-filegystem. We'll show how to create,
destroy, read and write to entries in this filesystem. Finally we'll also discuss the seq_file interface
and how it can be used to make proc filesystem entries.

162 CHAPTER 14. THE PROC FILESYSTEM

"T'wo advantages of using proc (as opposed to using ioct1 () calls or regular ﬁl‘es) are that it isﬁ always
available and is accessible to all users (providing the permissions are appropriate.)
er /sys.) Since usc

{] i or 1o the sysfs [acility (mounted und
Yome features of proc have migrated over 1o ¥ e e

of proc has always suffered from a lack of standards and conventions, one shou
whether or not proc is the best choice.

14.2 Creating Entries

Creating, managing, and removing entries in the proc filesystem is done with:

#include <linux/proc_fs.h>

_proc_entry (const char #name, mode_t mode,
struct proc_dir_entry *parent);
ar %pame, struct proc_dirmentry *parent);
struct proc_dir_entry *parent,

struct proc_dir_entry *create

void remove_proc_entry (const ch
struct proc_dir_entry *proc_symlink (const char *name,

const char #dest);)

. £) :

struct proc_dir_entry *proc_mkdir (const char *name, struct proc_dir_entry *parent);

ry, which will be created with the permissions

ives the name of the directory ent ; :
e e o ire { is NULL., the entry will go in the /proc main

contained in the mode argument. If the parent argumen
directory. :
The function proc_symlink() creates a symbolic link; it is equivalent to doing: 1n —s dest name.

T'he funciion proc_mkdir () creates directory name under parent.

The parent directory can be something you created with proc*mkdidr(i, or]/f diou want/ to pi/l; Sl
- i inc i TOC

i : ted subdirectory of /proc. Convenient ones include /proc/driver, /p
PNy I'Y . For instance one can do:

/proc/vet, /proc/net/stat, /proc/bus, and /proc/driver.

my_proc = create_proc_entry ("driver/my_proc", WNULL, NULL);

The basic data structure herc is proc_dir_entry which is given by:

struct proc_dir_entry {
unsigned shert low_ino;
unsigned short namelen;
const char *name;
mode_t mede;
nlink t nlink;
uid_t uid;
gid_t gid;
unsigned long size;
gtruct inode_operations * proc_lops;
struct file_operations * proc_fops;
get_info_t *get_info;
struct proc_dir_entry *next, *parent,
void *data;
read_proc_t *read_proc;

#gubdir;

14.3. READING ENTRIES 163

write_proc_t *write_proc;
atomic_t count; /% use count */

int deleted; /% delete flag %/
kdev_t rdev;

};

The important fields we will discuss in detail are the read and write callback functions, read_proc(),
write_proc(), which we'll discuss next.

The data pointer can be used like a private_data pointer. Tn particalar it is useful for using the
same read and write callback functions for multiple entries.

Note you can change the ownership and permission fields of the above structure and it will be reflected
in the directory entry.

14.3 Reading Entries

When a process tries to read an entry in the proc filesystem, it causes invocation of the read callback
function associated with the directory entry; i.e., you would have something like:

static struct proc_dir_entry ¥my_proc_entry;

my_proc_entry = create_proc_entry ("my_proc", 0, NULL);
my_proc_entry->read proc = my_proc_read;

perhaps in init_module(}, where the read callback function, my_proc_read() has been previously
delined. This has an infeger return type and its prototype definition is given by:

typedef int (read_proc_t)(char #page, char *#start, off t off, int count, int *eof,
void *data);

When someone tries to read the entry, the information will be written into the page argument at an

offset of of £, writing at most count bytes. For reading just a few bytes, the callback function usually
ignores these arguments.

The eof argument is only used when off and count are used; it should signal the end of the file
with a 1. The start argument is a left-over legacy from earlier implementations and isn’t used. The

data argument can be used to create a single callback function for multiple proc entries, or for other
purposes.

When successlul, your read function should return the number of bytes written into the buffer pointed
to by page. Here’s a simple example of a module using a proc read callback:

#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/init.h>

#include <linux/version.h>
#include <linux/jiffies.h>

static int x_delay = 1; /* the defanlt delay */

164 CHAPTER 14, THE PROC FILESYSTEM

static int -
x_tead_busy (char *buf, char x*start, off_t offset, int len,

int *eof, void *unused)

{
unsigned long j = jiffies + x_delay * HZ;
while (time_before (jiffies, 3))
/* nothing */ ;
*eof = 1; . o -
return sprintf (buf, "jiffies = Yd\n", (int)jiffies);
t

static struct proc_dir_entry *x_proc_busy;

static int __init my_init (void)

{ .
x_proc_busy = create_proc_entry ("x_busy”, 0, KULL);
x_procmbusyw>read_proc = x_read_busy;
return 0;

}

static void __exit my_exit (void)

{
if (x_proc_busy)

remove _proc_entry ("x busy”, NULL);
}

module_init (my_init);
module_exit {(my_exit);

MODULE_LICENSE ("GPL v2");

14.4 Writing Entries

-

When a process tries to write data to an entry in the proc filesystem, it canses invo(?atici?k of the
write callback function associated with the directory entry; ie., you would have something like:

static struct proc_dir_entry *my_proc_entry;

my_proc_entry = create_proc_entry ("my_proc”, 0, NULL);
my_proc_entry->wurite_proc = my_proc_write;

where the read callback function, my_proc_write() has been previously defined. This has an integer
reburn type and its prototype definition is given by:

i t
typedef int {write_proc_t)(struct file *file, const char __user #buffer, unsigned long count,

void *data);

‘'his fanction will read count bytes (at most) from the location pointed to by buffer.

14.5. THE SEQ _FILE INTERFACE 165

The file location is generally unused, and once again the location pointed to by the data argument
can be used when a single callback function is used for multiple file entries or for other purposes.

It is important to note that buffer is a user space pointer; thus you must use a function like

copy_from_user () to obtain its conlents. Once you have the contents you can pub them o use in
your kernel functions as needed.

Note that usually /proc entries are text, not binary. This means to convert user-space input into us-
able form you may require the services of functions like atoi (). However, these are not defined in the
kernel. Instead you need to use the following functions, defined in /usr/src/Hnux /lib /vsprintf.c:

long simple_strtol (comst char *cp,char **endp, unsigned int base);
unsigned long simple_strtoul (....);

unsigred long long simple_strtomll (....);
long long simple strtoll (....);

all of which have the same arguments. The first argument is a pointer to the string to convert, the
second is a pointer to the end of the parsed string, and the third is the number base to use; giving 0
is the same as giving 10. The following statements are equivalent:

long j = simple strtol ("-1000", NULL, 10);
long j = simple_strtel ("-1000", 0, 0);

You can also do the formaft conversion using the kernel implementation of sscant 0.

14.5 The seq_file Interface

"The seq_file interface is often used for read-only entries in the /proc llesystem. It addresses the
often encountered situation where data needs to be stored and/or printed as a series of sequential
records. Thus seqfile is short hand for a pseudo sequential file. :

Use of the relevant functions is particularly useful in maintaining (read-ouly) entries in the proc
filesystem.

All the relevant structures and functions are contained in /usr /sre/linux /include/linux/seq_file.h
and /usr/src/linux/fs/seq.file.c. The first major data structure is the seq.file itself:

struct seq_file {
char #buf;
size t size;
size_t from;
size_t count;
loff_t index;
struct semaphore sem;
struct seq.operations *op;

};

Normally one need not work directly with the elements of this structure except {o set the pointer to
the jump table of operations for this structure;

166 CHAPTER 14. THE PROC FILESYSTEM

struct seq operations {
oid * (kstart) (struct seq file #m, loff t *pos) ;
void (*stop) (struct seq file *m, void *v)
void * (*next) (struct seq file ¥m, void *V, loff_t *pos);
int (#show) (struct seq file *m, void *V);

T

The purpose of the start () method is to return a pointer to the member of the sequential series of
items indicated by the value of the *pos argument; i.e., where the reading of the items should begin.
T'his function may also need to establish some kind of lock to prevent corruption of the seq_file
structure while it is being traversed.

The purpose of the next () method is to return a pointer to the next item; it should also increment
*POS.

The purpose of the stop(method is to indicate the end of peeling off of the items. Usually it need
do nothing more than release whatever lock has been acquired, if any.

"T'he purpose of the show() method is to do the actual work of placing the data record in the seq_file
data structure. It does this using the functions :

static inline int seq putc (struct seq_file *m, char c);
atatic inline int seq._puts (struct seq_file *m, const char #8);
int seq printf {struct seq file ¥, comst char %, ...);

the use of which should be pretty clear from their close resemblance to the standard 1/0 functions,
putc(), puts(), printf () and their variants. The output is delivered to the pseudo output stream
represented by the seq_file gtructure pointer.

T'he reading of a seq_file data structure is usually done with the following standard methods, or
file operations:

jnt seq open (struct file *, struct seq_operations #);

ssize_t seq read (struct file #, char *, size %, loff_t #);
1off_t seq_lseek {(struct file *, loff_t, int);

int seq_release {struct imode *, struct file *J;

int seq_escape (atruct seq_file *, const char *, const char *);

Of these, the one that usually requires qubstitution is the open{) method. Typically one might have
something like this:

static struct seq_operations my_seq _oOps = {

.start= my_seq_start,
.next= my_seq_next,
.gtop= my_seq_stop,
.show= my_seq.show,

¥

static int my_seq.file_open {stTuct incde *inocde, atruct file #file){
return (seq open{ file, gmy_seq_ops) J;

T

static struct file_operations my_seq_file_ops = {
.open= my_seq,_file_open,

14.6. LABS

.read= seq_read,
.llseek= seq_lseek,
.release= seq_release,

You may be wondering how the file operations have access to the seq,

167

file data structure; exam-

ma.tlon Of th & P A
OUrce COde Indlca.tCS he rivat a ﬁold he file Structlll‘e .S us d fO lv
2 5 1 v e_dat ()J | 1 € T] 118

purpose,

I te articularly useful for implementi e he proc psendo-
‘ . . p Y : plementing read only entries in { d

esystem good example can be found in /usr/src/linux/ rivers/pci/proc <, which maintaing

fil t A f d d .¢, wh 3

a number of pro¢ entries.

A . . .
code fragment $howing how to set this up for the /proc¢/bus/pei eniry looks like:

static struct s¢q operations proc_bus_pci_devices op = {

.start= pci_seq start,
.next= pci_seq_next,
.s8top= pci_seq_stop,
.show= show_device

};

static int proc_bus_pci_dev_open({struct inode *inode
>
. struct file *file)

return seq open(file, &proc_bus_pci_devices_op);

¥

static struct file operations proc_bus_pci dev operations

=1

.open= proc_bus_pci_dev_open,
.Tead= seq_read,

.1lseek= seq_lseek,

.release= seq_release,

+;
struct proc_dir_entry *entry;

entry = create_proc_entr "davi "
if (entry) ~entry ("devices", 0, proc_bus_pci_dir);

a - =
ntry->proc_fops = &proc_bus_pci_dev_operations;

You can look at the full source examples o \a
o : o ol g ples of how the start (), next (), Stop(), and

14.6 Labs

Lab 1: /proc/kcore

TZ{‘ tO remove /Proc/kc()re I < i [)e |8ions !ll“l) e “ | y to L& ! !
y . 3 thel‘ 15 a I'mj i i W
/ / ; - 1 ! sc ir rese thenl i h

168 CHAPTER 14. THE PROC FILESYSTEM

If it doesn’t work, explain what this file is, and why it is difficult (if not impossible) to remove.

-

If you use cat to test your read entries in the following labs, you may find the unexpected
behaviour that the entry point is always called twice, even when you signal end of file, (You
can use strace to verify this happens with all proc entries and is not an error in your module.)
This is due to the way cat is written and is nothing to worry about.

Lab 2: Using the /proc filesystem.

Write a module that creates a /proc filesystem eutry and can read and write to it.
When you read from the entry, you should obtain the value of some parameter set in your module.

When you write to the entry, you should modify that value, which should then be reflected in a
subsequent read.

Make sure you Ternove the entry when you unload your module. What happens if you don’t and you
try to access the entry after the module has been removed?

The solution shows how to creale the entry in the /proc directory and also in the /proc/driver
directory.

Lab 3: Making your own subdirectory in /proc.

Write a module thab creates your own proc filesystem subdirectory and creates at least two enbries
under it.

As in the first exercise, reading an entry should obtain a parameter value, and writing it, should reset
it.

You may use the data element in the proc_dir_entry structure to use the same callback functions
for multiple entries.

Lab 4: Using /proc to send signals.

It is sometimes desirable to send a signal to an application from within the kernel. The function for
doing this is:

int send sig (int signal, struct task_struct ¥tsk, int priv);

where signal is the signal to send, tsk points to the task structure corresponding to the process to
which the signal should be sent, and priv indicates the privilege level (0 for nser applications, 1 for
the kernel.)

Write & module that opens up two entries in the proc file system.

o When the first entry is written to, it sets {he process ID of the process which is registered to
receive signals via this mechanism.

14.6. LADBS
169

e When the second entry’is writte i s b i
nd on n o, it gebs the signal to be delivered and then sends it.

o Reading either entry simply shows the current values of these parameters

Lab 5: Using seq_file for the /proc filesystem.

Take the simple x_bus ;
— ¥ proc ent aarh : .
face. ry discussed earlier, and re-implement it using the seq_file inter-

As a parameter, input the number of lines {0 print out.

CHHAPTER 14. THE PROC FILESYSTEM
179

Chapter 15

Unified Device Model and sysfs

We'll consider the unified device model, it’s main data structures and how they apply to real
devices and examine the sysfs pseudo-filesystem.

15.1 Unified Device Model 171
15.2 Basic Structures L e, 172
153 Real Devices iy i i i 174
6.4 sysfs .. L e e, 175
15.5 Labs e e 177

15.1 Unified Device Model

A unified device model (or integrated device model) was introduced in the 2.6 kernel series.
Under this scheme all devices are handled in one framework, with similar data structures and func-
tional methods. Additionally, this framework is represented as a device tree rooted on the systom
buses.

For the most part, device drivers need nol interact directly with this underlying model, but register
as devices under the type of bus they are connected to, such as pei. Information about the devices

171

172 CHAPTER 15. UNIFIED DEVICE MODEL AND SYSFS 15.2. BASIC STRUCTURES \ 17
3

is exposed in the sysfs lcsystem, to which drivers can optionally export data [or viewing, as a more 2.6.31: 404 /% arch specific additioms */
modern alternative to the use of the /proc filesystem and ioctl() commands, 2.6.31: 405 struct dev archdata archdata;

2.6.31: 4086
At the root of the driver model are kobjects, which contain simple representations of data related 2.6.31: 407 dev_t devt: /% dov
to any object in a system, such as a name, type, parent, reforence count, lock, efic. A set of kobjects 9.6.31: 408 ; ev_t, creates the sysfs "dev" */
identical in type is contained in a kset. 2.6.31: 409 spinlock t devres lock:

) . _ o 2.6.31: 410 struct list_h Thead:
The data structures incorporated in the new driver model contain information for each device such 5 6.31: 411 ist_head devres_head;
as what driver is used for them, what bus they are on, what power state they are in and how they . 2.6.31: 412 struct klist_node knode_class;
suspend and resume. They also map out the structure of the system buses, how they are connected 2.6.31: 413 struct class *clags: '
to each other and what devices can be atiached and are attached. 5. 6.81: 414 struct attribute :
_EToup **groups; * ;

2.6.31: 415 group /* optional groups */

2.6.31: 416 void (¥release) (struct device *dev) ;

2.6.81: 417 };

15.2 Basic Structures

After important fields are initialized, the device is registered with and unregistered from the system

For every device there is a generic structure defined in /usr/sre/linux /include/linux/device.h core With:

.31 397 2.6.31: 138 };

.31: 398 gtruct device_dma_parameters *dma_parms;

.31: 399

.31: 400 struct list_head dma_pools; /% dma pools (if dma’ble) #*/
.31: 401

,31: 402 stTuct dma_coherent_mem *dma_mem; /% internal for coherent mem

.31: 403 override #/

Drivers are registered /unregistered with the appropriate bus with:

int driver_register (struct device_driver *drv);
void driver unregister (struct device_driver *drv);

2.6.31: 387 struct device { -
2.6.31: 368 atruct device *parent ; int device register (struct device *dev);
2.6.31: 369 void device_unregister (struct device *dev);
2.6.31: 370 struct device_private *p;
2.6.31: 371 Reference counts for the device are atomically i : .
2.6.34: 372 struct kobject kobj; ’ ally incremented and decremented with:
2.6.31: 373 const char #init_name; /#* initial name of the device */
2.6.31: 374 struct device_type *type; struct device #get device (struct device *dev);
2.6.31: 375 void put_device (struct device *dev);
2.6.31: 376 struct semaphore sem; /% semaphore to synchronize calls to
.6.31: 377 * its driver. - .
g 231 e iy The pointer to a structure of type device_driver describes the driver for the device:
2.6.31: 379
2.6.31: 380 struct bus_type *bus; /* type of bus device is on */ 2.6.31: 121 struct device_driver {
2.6.31: 381 struct device_driver *driver; /* which driver has allocated this 2,6.31: 122 const char *name ;
2.6.31: 382 device =/ 2.6.31: 123 struct bus_type *bus;
2.6.31: 383 veoid sdriver_data; /% data private to the driver #/ 2.6.31: 124
2.6.31: 384 void splatform_data; /% Platform specific data, device 2.6.31: 125 struct module *owner:
2.6.31: 385 core doesn’t touch it */ 2.6.31: 126 const char * . . .
2.6.31: 386 struct dev_pm_info power; 2.6.31: 127 mod.name; /% used for built-in modules +/
2.6.31: 387 ‘ 2.6.31: 128 int {(*probe) (struct device *dev);
2.6.31: 388 #ifdef CONFIG_NUMA 2.6.31: 129 int (*remove) (struct device *dev);
2.6.31: 389 int numa_node; /% NUMA node this device is close to */ 2.6.31: 130 void (kshutdown) (struct device *dev);
2.6.31: 390 #endif 2.6.31: 131 int (*suspend) (struct device *dev, pm_message_t state);
2.6.31: 391 u64 *dma_mask ; /* dma mask (if dma’able device) */ 2.6.31: 132 int (*resume)} (struct device *dev);) - ’
2.6.31: 382 ubd coherent_dma_mask;/* Like dma_mask, but for 2.6.31: 133 struct attribute_group **groups;
2.6.31: 393 alloc_coherent mappings as 2.6.31: 134
2.6.31: 394 not all hardware supports 2.6.31: 135 struct dev.pm_ops *pm;
2.6.31: 385 64 bit addresses for consistent 2.6.31; 136
2.6.31: 396 allocations such descriptors. */ 2.6.31: 137 struct driver_private *p;
2.6
2.6
2.6
2.6
2.6
2.6
2.6

174 CHAPTER 15. UNIFIED DEVICE MODEL AND SYSF'S

and reference counts are incremented/ decremented with:

struct device_driver *get_driver (struct device_driver ®drv);

void put_driver (struct device_driver *drv);

Next we consider how this generic infrastructure connects to real devices.

15.3 Real Devices

Actusl device drivers rarely work directly with the structures we have so f‘ar described; rather they
are used by the internal code used for each specific type of bus and/or device.

For example, PCI devices have two important structures:

struct pei_dev {

struct pci_driver *driver;

struct device dev;

struct device_driver driver;

and drivers are registered with the system with

#include <linux/pci.h>

int pci_registerﬁdriver (struct pci_driver *)};
void pci_unregister_driver (struct pci_driver *) 3

Devices, on the other hand, are registered, or discovered, directly by the probe callback function or
H

by pci_find_device(}.

How is this connected with the generic infrastructure? Because the generic device structure is

embedded in the pci_dev structure, and the generic device_driver structure is embedded in the

pei_driver structure, onc must do pointer arithmetic.

"T'his is done through use of the macro to_pci_dev() as in:

struct device *dev;

struct pei_dev *pdev = to_pci_dev (dev);

which is implemented in terms of the container_of () macro:

15.4. SYSFS 175
#define to_pci_dev(n) conmtainer_of(n, struct peci_dev, dev)

where the first argnment is a pointer to the device structure, the second the lype of structure it is
contained in, and the third is thc name of the device structure in the data stracture.

Likewise, one can gain access to the pci_driver structure from its embedded devi ce_driver struc-
ture with:

struct device_driver *drv;

struct pci_driver *pdrv = to_pci_drv (drv);

With a few exceptions (such as when doing DMA transfers) device drivers do not involve the generic
structures and registration functions. For example, PCI devices fill in the pei_driver structure, and
call pci_register_driver() {and some other functions) i order to get plugged into the system.
However, these functions are written in terms of the underlying device model.

We have peeked at how PCI devices hook into the unified device model; we could do the same for
other kinds of devices, such as USB and network and we would find the same kind of structural
relations and embedded structures. Adding a new kind of device is just a question of following along
the same path.

15.4 sysfs

Support for the sysfs virtnal filesystem is built into all 2.6 kernels, and it should be mounted under
/sys. However, the unified device model does not require mounting sysfs in order to function,

Let’s take a look at what can be found using the 2.6.30 kernel; we warn you the exact layout of this
filesystem has a tendency to mutate. Doing a top level directory command yields:

$ 1s -F /sys
block/ bus/ class/ devices/ firmware/ fs/ kernel/ module/ power/

which displays the basic device hierarchy. The device model sysfs implementation also includes
information not strictly related to hardware.

Network devices can be examined with:

$ 1s -1F /sys/class/net

total O

druxr-xr-x 4 root root 0 Jul 28 01:33 ethd/
drwxr-xr-x 4 root root 0 Jul 28 01:33 ethi/
drwxr-xr-x 4 root root ¢ Jul 28 01:33 lo/

and looking at the first Ethernet card gives:

$ 1= -1 /sys/class/net/ethd/
total ¢
—r——r-—r-- 1 root root 4096 Jul 28 01:33 address

176 CHAPTER 15. UNIFIED DEVICE MODEL AND SYSFS

—r—1--r—— 1 root root 4086 Jul 28 11:19 addr_len
—y——r1——T—— 1 root root 4096 Jul 28 06:34 broadcast
—p—r—1—— 1 root root 4096 Jul 28 1i:19 carrier
lrwxrwxrwx 1 root root 0 Jul 28 01:33 device —>
../../../devices/pciGOOO:00/0000:00:19.0/0000:05:02.0/
—p——p——1—— 1 root root 4096 Jul 28 11:19 dev_id
—-r—r—1r— 1 Toot root 4096 Jul 28 11:19 dormant
—r——r—r—— 1 root root 4096 Jul 28 11:19 features
-ry-r—-—-t—— 1 root root 4086 Jul 28 06:34 flags
—ry-r-—r—— 1 root root 4096 Jul 28 11:i9 ifalias
—y—1-—1-— 1 Toot root 4096 Jul 28 06:34 ifindex
—r——r—r— 1 root root 4096 Jul 28 11i:19 iflink
—r——r-—1-— 1 root root 4096 Jul 28 11:19 link _mode
-ry—r——r-— 1 root root 4096 Jul 28 11:19 mtu
-r—r--r— 1 root root 4086 Jul 28 11:19 operstate
drwxr-xr-x 2 root root 0 Jul 28 11:19 power/
drwxr-xr—x 2 root root 0 Jul 28 06:35 statistics/
lrwxrwxrwx 1 reot root 0 Jul 28 06:34 subsystem —> ../../net/
—ru-r—-r—- 1 Toot root 4096 Jul 28 11:19 tx_queue_len
—r—r—71-— 1 root root 4096 Jul 28 01:33 type
—ry-r——r—— 1 root root 4096 Jul 28 (1:33 uevent

Notice that typing out the simple entries just reads out values:

$ cat /sys/class/net/ethl/mtu
1500

in the way we are accustomed to getting information from the /proc filesystem. The intention with
sysfs is to have one text value per line, although this is not expected to be rigorously enforced.

The underlying device and driver for the first network interface can be traced through the device
and (the to be seen shortly) driver symbolic links. The directory for the first PCI bus looks like:

$ 1s -F /sys/devices/pci0000:00

0000:00:00.0/ 0000:00:1a.2/ 0000:00:1c.4/ 0000:00:1d.2/ ©0000:00:1£.2/ power/
0000:00:01.0/ 0000:00:1a.7/ 0000:00:1c.5/ 0000:00:14.7/ 0000:00:1£.3/ uevent
0000:00:1a.0/ 0000:00:1b.0/ 0000:00:14.0/ 0000:00:1e.0/ firmware_node@
0000:00:1a.1/ 0000:00:1c.0/ 0000:00:1d.1/ 0000:00:1£.0/ pei bus:C000:00@

There is a subdirectory for each device, with the name giving the bus, device and function numbers;
e.g., 0000:00:0a.0 means the first bus (0), eleventh device (10}, and first function (0) on the device.
Looking at the directory corresponding to the Ethernet card we see:

$ is -1 /sys/devices/pci0000:00/0000:00:1c.0
total 0
—ry-r——r— 1 root root 4096 Dct 15 13:27 broken_parity_status
—p——r—-r—— 1 root root 4096 Oct 16 13:27 class
—-rw-r——r—- 1 root root 256 Gct 15 13:27 config

1 root root 4096 Dct 15 13:27 device

1 root root 0 Oct 15 13:97 driver —> ../../../bus/pci/drivers/skge

root root 4096 Oct 15 13:27 enable

~r—-r—-r—-
lruzrwxrvx

!
o]
b

|

i

1

I

|

|

1
-

15.5. LABS 177
-r—r——-r—— 1 root root 40986 Oct 15 13:27 irq

-r-—r——r—— 1 root rcot 4096 Oct 16 13:27 local_cpus

—-r—r——r— 1 root root 4096 Oct 15 13:27 modalias

-rw—-r—-r—— 1 root root 4096 Oct 15 13:27 msi_bus

drwxr-xr—x 3 root root 0 Qct 1b 09:39 net—

drwxr-xr-x 2 root root - 0 Oct 15 13:27 power

-r——r—r—— 1 root root 4096 0Oct 15 13:27 resource

~rw—=——-= 1 root root 16384 Oct 15 13:27 resourcel

TR 1 root root 256 Oct 15 13:27 resourcel

—prm————— 1 root root 131072 Cct 15 13:27 rom

lrwxrwzrwx 1 root root 0 Oct 15 13:27 subaystem -> ../../../bus/pci
-r—r-—r—— 1 reot rocot 4096 Oct 16 13:27 subsystem_device

-r——r—r-— 1 root root 4096 Oct 15 13:927 subsystem_vendor

-ry-r——r—— 1 root rooct 4096 Oct 15 13:27 uevent

~r——r——r~—— 1 root root 4096 Gect 15 13:27 vendor

To see the full spectrum of information that is available with sysfs you'll just have to examine it

15.5 Labs

Lab 1: Using libsysfs and sysfsutils.

The systool multipurpose utility gives an easy interface for examining the /sys device tree, and is
gt]

art of the sysfst : 1 i . P . .
fibhal. ysistools package. Currently it uses libsysfs, which is being deprecated in favor of

Do man systool and run the systool command without arguments. It should portray all bus types
s ?

deViC&S ClaSSCS, a.rld I'OOI dPViCeS DO 8 1 - Use so
* " Ystoo h tO see hOW tO e S f g £ it 3
i . 1€ O Lhe d.ddltl()nal a:rgumentb

Explore!

178

CHAPTER 15. UNIFIED DEVICE MODEL AND SYSFS-

Chapter 16

Firmware

We'll discuss binary firmware and how to use it.

16.1 What is Firmware? 00 i i 179
16.2 Loading Firmware 180
16.3 Labso e e e, 180

16.1 What is Firmware?

Firmware consists of instructions and data embedded in a hardware device that are necessary for
its proper functioning. This binary information can be stored in ROM, in rewritable EEPROM,
or on flash media. However, vendors often find it. is cheaper and more flexible to have the firmware
loaded by the operating system.

While there is a gray line between deploying operating system-loaded firmware and. the use of binary
blobs, it is usually clear for a given device which is the more appropriate deseription. Use of firmware
does not cause tainting of the Linux kernel. Ilowever, there are Linux distributions which have
problems distributing drivers with requnire binary firmware, or whick don't distribute the binary
firmware itself.

We'll leave aside here the question of where o obtain the firmware for a given device that requires

179

180 , | CHAPTER 16. FIRMWARE

it, as it varies from device to device. Sometimes one even has to cut it oub of the device driver for
another operating system, as there may he no other method.

Furthermore, the question of whether firmware should be shipped with the kernel itself, and if not
where it should reside on the filesystem is somewhat contentious and has not completely settled
down. In some cascs it does indeed ship with the kerpel, and if not the precise location may be
distribution-dependent. For most Linux systems one can generally find non-kerne! shipped firmware
under /lib/firmware.

16.2 Loading Firmware

Loading of firmware into drivers can he done with:

#include <linux/firmware.h>

struct firmware {

size_t size;

const uB *data;
};
MODULE_FIRMWARE(filename);

int request_firmware(const struct firmware *¥fw, const char *filename, struct device *device);
void release firmware(const struct firmware *fw};

where filename is the name of the firmware file to be loaded; on any recent Linux system it should
be placed under /lib/firmware. Upon successful return, request I irmware() places size bytes in
the data field of the firmware structure.

For real devices attached to a physical bus such as PCI, one can easily get a hook into the device
structure from the relevant bus-associated structure, guch as pci_dev. Fora pseudo-device (for which
firmware probably doesn’t make sense anyway), one would at least have to register the device and fill
in some parts of the device structure before trying to load/unload the firmware,

There is a strong user-space component to how the firmware gets loaded, and it will vary among
distributions. See /usr/src/linux/ Documentation/firmware. class for details.

16.3 Labs

Lab 1: Loading ¥Firmware

Write a module that loads some firmware from the filesystem. Lt should print out the contents.

In order to do this you'll need to place a firmware file under /lib/firmware. You can use just a text
file for the purpose of this demonstration. ‘

Since this is a psendo device, you will have to declare and initialize a device structure. Minimally
you must set the void (*xrelease) (struct device #dev) field in this structure, and call

int dev_set_name (struct device sdev, const char *fmt, R

16.3. LABS
to set the device name, which can be read out with:

const char *dev name(const struct device *dev);
;

Yo ¢ i
(You may want to see what happens if you neglect setting one of these quantitics.)
Make surc you call

device_register (struct device *dev):
X i 3
device unregister(struct device *dev);

before requesting and after releasing the firmware,

181

182

CHAPTER 16. FIRMWARE

Chapter 17

Memory Management and
Allocation

ranges of pages at once. We'll also consider how to grab larger amounts of memory at boot.

17.1
17.2
17.3
17.4
17.6
17.6
7.7
17.8
17.9

Virtual and Physical Memory F e e e e e e 184
Memory Zoneso 185
PageTables v e ... 186
kmalloc() 186
—getfreepages() 188
vmalloc(} e, 189
Early Allocations and bootmem() 189
Slabs and Cache Allocations e e e et e 180
Labs e 193

183

We'll see how Linux distinguishes between virtua] and physical memory
and has them work together. We’ll discuss the memory zone allocator scheme. We'll consider how
mermory is organized into pages and the various algorithms used to control and access them. We'll
consider the various methods Linux uses to allocate memory within the kernel and device drivers,
distinguishing between the kmalloc() and vmalloc() methods, and how to allocate whole pages or

184 CHAPTER 17. MEMORY MANAGEMENT AND ALLOCATION

17.1 Virtual and Physical Memory

Linux uses o virtual memory system (VM), as do all modern operating systcms: the virtual
memory is larger than the physical memory.

Fach process has its own, protected address space. Addresscs are virtual anfl mush be translated to
and from physical addresses by the kernel whenever a process needs Lo access memory.

The kernel itself also nses virtual addresses; however bhe_ﬁransla.tion can be as simple as an offset
depending on the architecture and the type of memory being used.

Tn the following diagram (for 32-bit platforms) the first 3 GB of ‘E}(;il}];dl addgissets ?ise }111;32 ;]22 ;Jser(;
J : i - ther architectu a samm
-¢ memory and the upper GB is used for kernel—sp.ace memory chitectures
25?1(11;3 but d%ering values for PAGE_OFFSET; for 64-bit platforms the value is in the stratosphere.)
1

PAGE_OFFSET
(C0000000)

Figure 17.1: User and kernel address regions

The kernel allows fair shares of memory to be allocated to every running groci.ssi{ auf(ii1 Cz(;r{ila?t:g
i : additi ing can be used to link a fie dir
hen memory is shared among processes. In .:de]t,lon', mappin| ‘ ‘)
:process’s viyrbual address space. Furthermore, certain areas of memory can be be protected against
writing and /or code execution.

For a comprehensive review of What Every Programmer Should Know About M;fm;x}-lgir;
soe Ulrich Drepper’s long article at http:// people.redhat:com /drepper/ cpqmeng;rg.;; C.tc
covers many issues in depth such as proper use of cache, alignment, NUMA, virtualization, ctc.

17.2. MEMORY ZONES i85

17.2 Memory Zones

Linux uses a zone allocator memory algorithm, which is implemented in /usr/src/ linux/mm
/page_alloc.c. In this scheme, which has an object-oriented favor, each zone has its own methods

for basic memory operations, such as allocating and freeing pages of memory.

Memory Zones
(32-bit x86)
4GB

HIGH

896 MB

NORMAL
16 MB

DMA

| ISA
(legacy)O MB

Figure 17.2: DMA, normal and high memory

There are three memory zones:

* DMA-capable memory must be used for DMA data transfers, Exactly what this means

depends on the platform; for example, on x86 ISA devices it means the memory must lie
below 16 MB.

s High memory requires special handling and has meaning only certain platforms. It allows

access for up to 64 GB of physical memory. On the 32-bi; x86, it means memory at and above
896 MB.

s Normal memory is everything else.

When memory is allocated the kernel examines what flags were associated with the request, and on
that basis constructs a list of memory zones that can be used. When the flag GFP_DMA is requested,
only pages in the DMA zone are considered. If GFP_HICHMEM is specilied all three zones can be
used to geb a [ree page. If neither of these flags are given, both the normal and DMA zones are

186 CHAPTER 17. MEMORY MANAGEMENT AND ALLOCATION

congidered. On platforms where high memory is not a concept, GFP_HIGHMEM has no effect; i.c., all
memory is low memory, and memory is flat.

j isti alive zone.
By looking at /proc/zoneinfo one can ascertain usage statistics for each operative zo

While Linux permits up to 64 GB of memory to be used, the limit per pro?f:ess 1's a httlfat lzbs?’;}_l&rtl
3 GB on 32-bit architectures. This is because there is only 4 GB (?f adc_lresb spa;e (11.e.,1 IL ;I8 32 bt
Timited) and the topmost GI is reserved for kerne! addresses. The htblfa is somewhat less than 3 G
because of some address space being reserved for memory-mapped devices.

17.3 Page Tables

Memory is broken up into pages of fixed size {4 KB on x86). Portable code should ;gver depzi:g
on a particular page size. To obtain the actual value kernel code can use the PAGE_STZE macro
user-space programs can call the function getpagesize 0.

For 4K pages, the lower 12 bits of the virgual address contain the offset; the remaining bits contain
the virtual page frame number (PFN}).

Pages of virtual memory may be in any order in physical memory. The processor _convertsl 131; v1rtr}ixl
PEN into a physical one, using page tables. Fach entry in the page table contains a valid liag, the
PFN, and access control information.

Tf the requested virtual page is not valid, the kernel gets a page fgult and thefl tr}fes to‘ gob r::lge
proper page into physical memory. Demand Paging will {ry and bring the page in. I'ie page may
have been swapped out to disk.

If a page has been modified and there are insufficient, free physical pages, a page is. _marléed ES dirty
and will either be written to disk if the page corresponds to file-based data, or .Writ,ten to the swap
file. Pages to be discarded are chosen with a LRU {Least Recently Used) algerithm.

Linux uses a four-level Page Table, cven though the 32-hit x86 proce;:sorsh have on'lif tw?]e\:ﬁs
i i a threc-level scheme.) This permits using the
f page tables. {Before version 2.6.10, Linux used a . s
:anl:e%functional methods for all architectures; traversing the superfluous levels involves fall-through
functions.

If you use the 64 GB option on x86, Linux uses the PAE (Physical Address Extension)hfacﬂlty
which gives an extra 4 bits of address space. In this it uscs a true three-level scheme, rather that one
in which one dimension is collapsed.

17.4 kmalloc()

The most common functions for allocating and freeing memory in the Linux kernel are:

#include <iinux/slab.h>

void *kmalloc (unsigned int lem, gfp_t gip_mask);
void kfree (void *ptr);

Possible values for the gfp_mask argument are detailed in / usr/sre/linux/include/linux/gfp.h
and can be:

17.4. KMALLOC()

Table 17.1: GFP memory allocation flags

187

Value Meaning

GFP_KERNEL Block and cause going to sleep if the metnory is not immediately available,
allowing preemption to occur, This is the normal way ol calling kmalloc ()},

GFP_ATOMIC Return immediately if no pages are available. For instance, this might be
done when kmailoc() is being called from an interrupt, where sleep would
prevent receipt of other interrupts.

GFP,_DMA For buffers to be used with ISA DMA. devices; is OR’ed with GFP_KERNEL
or GFP_ATOMIC. Ensures the memory will be contiguous and falls under
MAX_DMA_ADDRESS=16 MB on x86 for ISA devices; for PCI this is unncces-
sary. The exact meaning of this flag is platform dependent,.

GFP_USER Used to allocate memory for a user . May sleep, and is a low priority request.

GFP_HIGHUSER | Like GFP_USER, but allocates from high memory

GFP_NOID Not to be nsed for filesystem calls, disallows 10 initiation.

GFP_NF3 For internal use.

Drivers normally use only the values GFP_KERNEL, GFP_ATOMIC, and GFP_DMA.

The in_interrupt() macro can be used to check if you are in interrupt or process context. For

instance:

char sbuffer =

kmailoc (ubytes, in_interrupt() 7 GFP_ATOMIC : GFP_KERNEL) ;

A similar macro, in_atomic(), also checks to sce if you are in a precmptible context.

¢ Note: GFP_ATOMIC allocations are allowed to draw down memory resources more than

those with GFP_KERNEL to lessen chances of failure; thus they should not be used when
they are not necessary. .

To allocate cleared memory, nse

void #kzalloc (size t size, gfp.t flags);

which calls kmalloc(size, flags) and then clears the allocated memory region.

188 CHAPTER 17. MEMORY MANAGEMENT AND ALLOCATION

One can also resize a dynamically allocated region with:
void *krealloc {const void #p, size_t new_size, gfp.t flags);

kmalloc () will return memory chunks in whatever power of 2 that mafkches or exceeds 191'1. It df)e;‘i[\ﬂ};t
clear memory, and will return NULL on failure, or a pointer to the allocated memoi'y toil buccises.uéste;
largest allocation that can be obtained is 1024 pages (4 MB on x86). E‘or somewhal larger requests
(more than a few KB) it is better to use the __get_free_page() functions.

17.5 _ get_free pages()
To allocate (and free) entive pages (or multiple pages) of memory in one fell swoop one can use:

#include <ilinux/mm.h>

unsigned long get_zerced_page ({gfp_t gfp_mask) ;
unsigned long __get_free page (gfp_t gip_mask); . y
unsigned long __get_free_pages (gfp_t gfp_mask, unsigned long order);

void free_page (unsigned long addr);
void free_pages (unsigned long addr, unsigned long order) ;

The gfp_mask argument is used in the same fashion as in kmalloc{).

order gives the mumber of pages (as a power of 2). The limi‘F is 1024 pages, or ?rder =10 (4
MB on x86). There is a function called get_order() defined in fusr/ src/.hnux/ include/asm-
geheric /page.h which can be used to determine the order given a number of bytes.

The __get_free_pages() function returns a pointer to {he first byte of a memory area that is several
pages long, and doesn’t zero the area.

The __get_free_page() function doesn’t clear the page; it is Preferred over pet_zeroed_page()
because clearing the page might take longer than simply getting it.

It is important to free pages when they are no longer needed to avoid kernel memory leaks.

Example:

—sread buf = (unsigned char *) __get_free_page(
TRt e (in_interrupt()) 7 GFP_ATOMIC : GFP_KERNEL);

if ('tty->read_buf)
return -ENOMEM;

17.6. VMALLOC() 189

17.6 vmalloc()

vmalloc () allocates a contiguous memory region in the virtual address space:

#include <linux/vmalloc.h>

void *vmalloc (unsigned long size);
void viree (void #ptr);

wvmailoc(} can't be used when the real physical address is needed (such as for DMA), and can’t be
used al interrupt time; internally it uses kmalloc () with GFP_KERNEL.

While the allocated pages may not be consecutive in physical memory, the kernel sees them ag a

contiguous range of addresses. The resulting virtual addresses are higher than the top of physical
memaory,

More overhead is required than for __get_free_pages (), so this method shouldn’t be used for small
requests. In principle, vmalloc{) can return up to the amount of physical RAM, but in reality one
may obtain far less, depending on the platform and the amount of physical memory.

Example:

in_buf [dev]l=(struct mbuf *)vmalloc(sizeof (struct mbuf));

if {in_buf[dev] == NULL)
{

printk (KERN_WARNING "Can’t allocate buffer in_buf\n");
my_devs [dev] ->close{dev);
return -EIQ;

}

Current vmalloc() allocations are exposed through /proc/vmallocinfo.

17.7 Early Allocations and bootmem()

The maximum amount of contiguous memory you can obtain through the various ——get_free_page()

functions is 1024 pages (4 MB on x86.) If you want more you can not do it from a module, but the
kernel does offer some functions for doing this during boot:

#include <linux/bootmem.h>

void *alloc_bootmem {insigned long size);
void *alloc_bootmem_low (unsigned lomg size);
void *alloc_bootmem_pages (unsigned long size);

void *alloc_bootmem low_pages (unsigned long size};

‘The functions with _pages in their name allocate whole pages; the others are not page-aligned. The
functions with _low make sure the memory locations obtained lie below MAX_DMA ADDRESS. Olherwise,
the memory allocation will be above that value.

190 CHAPTER 17. MEMORY MANAGEMENT AND ALLOCATION

It is impossible to free any memory allocated using these functions. However, once you have grabbed
this large memory chunk you are frec to run your own kind of memory allocator to rcuse the memory

as nceded.

"These functions arc primarily intended for critical data structures that are allocated early in the boot
process and are required throughout the life of the system. However, they can be used for other

PUrpOSes.

17.8 Slabs and Cache Allocations

Suppose you need to allocate memory for an object that is less than a page in size, or is not a multiple
of a page size and you don’t want to waste space by requesting whole pages. Or suppose you need
to create and destroy objects of the same size repeatedly, perhaps data structures or data buffers.
These may be page size multiples or not.

In either case it would be very wasteful for the kernel to continually create and destroy these objects
if they are going to be reused, and it is additionally wastetul to induce the kind of [ragmentation that
results from contimually requesting partial pages.

You could allocate your own pool of memory and sct up your own caching system, but Linux already
has & well defined interface for doing this, and it should be used. Linux uses an algorithm based
on the well-known slab allocator scheme. As part of this scheme you can creabte a special memory
pool, or cache and add and remove objects from it (all of the same size) as needs require.

The kernel can dynamically shrink the cache if it has memory neads elsewhere, but it will not have
to re-allocate a new object every time you need one if there are still wholly or partially unused slabs
in the cache. Note that more than one object can be in a slab, whose size is going to be an integral
number of pages.

The following functions create, set up, and destroy your own memory cache:

#inciude <linux/slab.h>

atruct kmem_cache *kmem_cache_create (
const char *name, size_t size,
asize_t offset, unsigned long flags,
void (*ctor}(void *, struct kmem_cache ¥, wnsigned long flags),

}

int kmem_cache_shrink (struct kmem_cache *cache) ;
void kmem_cache_destroy (struct kmem_cache #cache) ;

These creabe a new memory cache of type struct kmem_cache, with the name argument serving to
identify it. All objects in the cache (there can be any number) arc size bytes in length, which cannot
be more than 1024 pages (4 MB on x86).

The offset argument indicates alignment, or offset into the page for the objects you arc allocating;
normally you'll just give 0.

"The last argument to kmem_cache_create() points to an optional constructor function used to
initialize any objects before they are used; the header file contains more detailed information about
the arguments and flags that can be passed to this rarely used function. :

17.8. SLABS AND CACHE ALLOCATIONS

The flags argument is a bitmask of choices given in /usr/src/limux/ include/linux/slab.h;
it

main ones are:

Table 17.3: Memory cache flags

Flag

Meaning

in

the

SLAB_HWCACHE_ALIGHN

Force alignment of data ohjects on cache lines. This improves

perf_ormance but may waste memory. Should be set for critical
performance code. '

SLAB_POISON

I+l t_he slab layer with the known value, aba5a5a5. Good for
catching access to uninitialized memory.

SLAB_RED_ZONE

Surround aflocated memory with red zones that scream when
touched, to detect buffer overruns.

SLAB_PANIC

Cause system panic upon allocation Failrre.

SLAB_DEBUG_FREE

Perform expensive checks on freeing objects

SILAB_CACHE_DMA

Make sure the allocation is in the DMA zone.

When your cache has been deployed, name will show up under /proc /slabinfo, and will show some-

thing like:

slabinfo — version: 1.1

kmem_cache 59
mycache 0
ip_conntrack 0
tcp_tw_bucket 0
tcp_bind_bucket 12
size-8192(DMA) 0
8ize—-8192 0
size-32(DMA) 0
size-32 888

78 100 2 2 1
i 4096 0 1 1
1 352 0 1 1
4] 96 0 0 i
113 32 1 1 1
¢ 8192 0 0 2

1 8192 0 1 2

0 32 0 0

8814 32 69 78 1

where the meanings of the fields are:

¢ Cache name

¢ Number of active objects

Total cbjects

Object size

Number of active slabs

Total slabs

Number of pagés per slab

192 CHAPTER 17. MEMORY MANAGEMENT AND ALLOCATION

A dynamic and interactive view of the various caches on the system can be obtained by using the
slabtop utility, where the elements can be sorted in many ways. One can sce the same information
by using the command vmstat -m.

Now that you have created your memory cache, you can make any number of objects associated with
it, and free them, with the functions:

void *kmem cache_alloc{ struct kmem_cache *cache, gfp.t gfp_mask);
void kmem_cache_free (struct kmem_cache *cache, void *);

pointing to the cache you have created as the first argument. The gfp_mask argument is the same
as for __get_free_pages(). (If the memory doesn’t already exist in the cache, it will be created
using these flags.) The second argument Lo kmem_cache_free() simply points to what yon got from
¥mem_cache_alloc(). :

You can use the function kmem_cache_shrink () to release unused objects. When you no longer need
your memory cache you must free it up with kmem_cache_destroy () {which shrinks the cache first);
otherwise resources will not be freed. This function will fail if any object allocated to the cache has
not been released.

Note it is also possible to set up a memory cache that never drops below a certain size using a
memory pocl, for which the APT can be found in /asr/src/linux/include/ linux/mempool.h.
Such memory is taken outside of the normal memory management system and should be used only
for critical purposes.

Kemnel Kathiel
Vergion = Veraiom
Nate Note

e The 2.6.22 kernel introduced the SLUB allocator as a drop-in replacement for the older
SLAB implementation. Which one to use i a compile time option; in the 2.6.23 kernel
SLUB was made the default.

e The new allocator has less of the complexity that evolved in the old one, has a smaller
memory footprint, some performance enhancements, and easier debugging capabilities.

» Eventually SLAB will disappear, but due to the importance of having a stable cache
allocator, this will only happen after SLUB has withstood the test of large scale deploy-
ment.

17.9. LABS
193

17.9 lLabs

Lab 1: Memory Caches

Eaxtend your character driver to allocate the driver’s i [i
’) 3 s internal bufler b
Make sure you free any slabs you create. Y ueine your o memory cache.

For extra credit create more than one obj ¢ i
: ject (perhaps every time you do a read ite)
sure you release them all before destroying the cache. a4 or vite) and make

Lab 2: Testing Maximum Memory Allocation

See how much memory you can obtain dynamicaily, using both kmalloc () and __get_free_pages ()

Start with requesting 1 ps i : : - .
e, G ng 1 page o memory, and then keep doubling until your request fails for each type

Make sure you free any memory you receive.
You'll probably want to use GFP_ATOMIC rather than GFP_KERNEL. (Why?)

I you have trouble getting enough memory due to memory fragmentation trying writing a poor-man’
de—ifragmenter, and then running again. The de-fragmenter can inst be an application thgt ab a,;
available memory, uses it, and then releases it when done, thereby clearing the caches Yougr Sls
try the command sync; echo 3 > /proc/sys/vm/drop_caches . . T

'_I‘ry the sarme thing Witl"l vmalloc(). Rather than doubling allocations, start at 4 MB and increase
in 4 MB increments until failure results. Note this may hang while loading, (Why'?).

194

CHAPTER 17. MEMORY MANAGEMENT AND ALLOCATION

Chapter 18

Transferring Between User and
Kernel Space

kernel space.

from within the Kernel.

18.1 Transferring Between Spaces 196
18.2 put(get)_user() and copy.to(from)_user() 196
18.3 Direct transfer -~ Kernel I/O and Memory Mapping 188
18.4 Kernel I/Oo 199
i8.5 Mapping User Pages [200
18.6 Memory Mapping 201
18.7 User-Space Functions for mmap() 202
18.8 Driver Entry Point formmap() 204
189 Belay Channels 207
1810Relay APTo i 208
18.11Accessing Files from the Kernel 209
1812Labs 212

We'll see how Linux handles the transfer of data between user and
We'll discuss the various Functions used (o accomplish this. We'll consider direct
kernel I/0, which can be used to pin memory and enhance I/O throughput. We’ll discuss memory
mapping, explain the user-space system calls involved, and then examine the entry point into a
character driver. We'll also congider the use of Relay Channels. We'll also show how to access files

196 CHAPTER 18. TRANSFERRING BE1WEEN USER AND KERNEL SPACE

18.1 Transferring Between Spaces

User-space applications work in a different (virtual) memory space than does the kernel.

When an address is passed to the kernel, it is the virtnal address in user-space. An example would
be the pointer o buf in the read() and write () driver entry points.

Any attempt from within the kernel Lo directly access these virtual poi[}ters is a good recipe for
disaster. As a matter of principle, these addresses may not be meaningful in kernel-space.

Orne might indeed get away with dereferencing a pointer passed [ro.m user-space - for a 'whﬂ,l‘e, Ifa
page gets swapped out, disaster will oceur. The moral of the story is that one should never directly
dereference a uscr-space pointer in kernel-space.

The functions which accomplish the transfers do two distinet things:
s Verify the user-space address, and handle any page Faults that may occur if the page is corrently
not regident in memory.

e Perform a copy between the user and kernel addresses.

Using raw [/O or memory mapping can avoid copying.

18.2 put(get)_user() and copy_to(from)_user()

All the following functions can be used only in the context of a process, since they‘ must ref.er to the
current process’s task_struct data structure in order to do ihe address translation. - Calling them
from an interrupt routine is another good recipe for disaster.

One should never surround the following transfer fanctions with a gpinlock, a.s.they may go to sleep,
in which case your driver (or even the systern} could get hung, as the spinlock might never be released.

#include <linux/uaccess.h>
access_ok (int type, unsigned long addr, unsigned long size);

int get_user (lvalue, ptr);
int __get_user (lvalue, ptrl);

int put_user (expr, ptx);
int __put_user (expr, ptr);

unsigned long [. .J]copy_from user (
unsigned long to,
unsigned long from,

18.2. PUT(GET).USER() AND COPY_TO(FROM)_USER()

unsigned loung len) ;

unsigned long [__Jcopy to_user (
unsigned long to,
unsigned long from,
unsigned long len) ;

long [__Jistrncpy_from_user {(char *dst, comst char #*src, long count);
long strlen_user (const char *str);

long strnlen user (const char *str, long n);
unsigned long [__lclear user (void *mem, unsigned long len);

These functions are the only place in the kernel where page faults are resolved as they

are in user-space, by demand paging or segmentation faults according to whether or not
they are legal,

This occurs only on pages for the user-space pointer; the kernel never swaps out pages for

its own use and always allocates them with urgency and thus never has demand faulting
for kernel memory.

access_ok()

type is VERIFY_READ or VERIFY_WRITE depending on what you wart to do in user-space. For both
use VERIFY WRITE

addr is the address to be checked.
size is a byte count.
Is called by the most of the following functions; thus rarely needs to be called directly.

Returns 1 (true) if current process is allowed access; 0 on Failure,

get_user()

Transfers data from user space to kernel space.
Assigns to Ivalue data retrieved from the pointer ptr.

Is implemented as a macro, which depends on the type of ptr.

Calls access_ok() internally.
Relrieves a single value.

Returns 0 for success, ~EFAULT otherwise.

197

198 CHAPTER 18. TRANSFERRING BETWEEN USER AND KERNEL SPACE

_get_user()

Same as get_user() but doesn’t call access_ok(). Use when safety is already assured.

put_user(), _.put_user()

Transfers data from kernel space to user space.

Same as the get_user() functions, except the direction is reversed; Writes expr data to user space

al ptr.

copy _from user()

"Transfers len byles from user space to kernel space.

Calls access_ok () internally.
Also __copy_from_user(to, from, lemn).

Returns the number of bytes not transferred. In error, the driver should return -EFAULT

copy_to_user()

Transfers len bytes from kernel space fo user space.
Calls access_ok() internally.

Also __copy_to_user(to, from, len).

Returns the number of byles not transferred. In error, the driver should return -EFAULT

strncpy. from_user(), strlen_user(), clear_user()

The string functions work just as their names suggest, except the pointer of the string is in user-space.

The clear _user() function clears the contents of the memory location pointed to.

18.3 Direct transfer - Kernel 1/O and Memory Mapping

There are two complementary methods Linux can use to avoid using the heretofore described transfer

functions.
In the kio method, the kernel is given direct access to user-space memory pointers. The memory is

locked down while the transfer goes on, making sure no pages swap out and the pointers remain valid.
When the transfer is over the pinning is released. This is the basis of the raw I/0 implementation.

Note that if a file is opened with the non-standard O_DIRECT flag, kio will be used on that file.

18.4. KERNEL 1/0
199

In th i i i i y
1] € mMemory mapping method, user-space 1s grven direct access (o kernel memor buffers which
)

may be memory regions residi i . v .
= gions residing directly on the device. The mmap() call is a standard POSTX system

ioi;ilt Igztﬁzgssﬁiﬁig amy Li}){uffefilﬂg or caching for the data being transferred. They require longer
;. down than the copying methods previously disc d i
depends on a number of factors, such as the si T, ther ooy s, mkbod
’ as the sizc] i kel
s il Do romam o , e size of the transfers, their frequency, the likelihood the

18.4 Kernel 1/0

giﬁ}ﬁmﬁf it ishdesirable to‘byl_)ass the buffer and page caches entirely, and have I/O operations pass
wctly throng to the.devme in raw form. "T'his eliminates ai least one copy operation. L :
base applications are often users of so-called raw 1/0 operations v - oo data

‘T'his facility can be used to lock down user
‘ -space buffers and use them directly in the k i
use of the copy_to_user(), copy_from_user() and related functions. d © Hemel, without

From user-space, onc can force the kernel to use this kind of direct 1/0, by opening a file with the

0 DIRECT Ha‘g. 1his iS a gnll eXteIiSiOIl O W‘[a]S(I tl I | e
] 3 on ll C 1 e,
A]i : y k) C th; macro GNU SUURCE; 1. y YOu’Il

fidefine _GNU_SOURCE

fd = open (filename, O_DIRECT | O_RDWR | O_CREAT | O_TRUNC 0666} ;
— » *

Whenever this file descriptor is used, kernel 1/0 will be used.

UHS(;rep:(;) Sai‘nxe:;zir;i;f? of(im s(hor:hproglggam which copies a file, using direct I/0 on the output file. We
—memalign() (or the older memalign(}) instead of ordina -

: , , ry malioc() to e

alignment. (All transfers must be scctor aligned and an integral number of sectois) Io?xge;lsure reter

/*
args: 1 = input file, 2 = output file, [3 = chunk size]

usage: %s infile ofile
%s infile ofile 512
*/f

#define _GNU_SOURCE
#define SECTOR_SIZE 512

#include <unistd.h>
#include <fcntl.h>
#include <gtdlib.h>
#include <stdio.h>
#include <mallec.h>
#include <string.h>

int main (int argc, char *argvi})

{

200 CHAPTER 18. TRANSFERRING BETWEEN USER AND KERNEL SPACE

char #buf;
int fdin, fdout, rcr, row;
/% defamlt chunk = 1 page */
int size = getpagesize (J;
if (argec > 3)
gize = atoi (argvi3l);

4

/% open inmput file, must exist */
£din = open {argv[i], O_RDONLY);

i te */
% open output file, create or trunca ;
édouz = open (argv[2], O_DIRECT | O_RDWR } D_CREAT | O_TRUNC, 0666)

/% use sector aligned memory region */ . y
/% buf = (char *)memalign (SECTDR_SIZE, size);
posix_memalign (&buf, SECTOR_SIZE, size);

while ({rcr = read (fdin, buf, gizel} > 0) {
rew = write (fdout, buf, rer);
printf ("in = Y%d, out = d\n", rer, rcw);
if {rer !'= rcw) ' o
: printf ("Oops, BAD values —— mot sector aligned perhapsin');

by

close (fdin);
close (fdout);
exit (0);

18.5 Mapping User Pages

i i irectly to the
The get_user_pages () tunction provides a method of exposing user-space mermory directly to

. V i se it is the inv ion to memory
kernel Wthh can hi lp a; oid an cxtra copy; some sense 1t is the inverse opera,t
1

mapping which makes kernel memory directly visible to the user side.

The essential function is:

#include <linux/mm.h>

int get_user_pages(struct task struct *tak,
struct mm_struct *mm,

unsigned long start,

int len,

int write,

int force,

struct page *¥pages,

struct vm_area_struct *¥ymas) ;

i ; i i ent
“I'he first two arguments are the process and user address space involved; usually they are just curr
e

and current—>mm.

i i ddress o
The start argument gives the sta‘rblrfg a : .
bytes). The write ilag should be set if one desgres to alter the bufler,
to force access no matter what current permissions are.

{ the user-space buffer of length len pages {not -
and the force flag can be set

18.6. MEMORY MAPPING 201

The return value of this function is the number of pages mapped, and the pages argument receives
an array to pointers for page structurcs. The final argument will be filled with an array of pointers
to the vm_area structure containing cach page, unless it is passed as NULL.

A typical use of this function might look Tike:

down_read (¤t->mm->mmap_sem) ;

rc = gel_user_pages (current, curremt->mm, (unsigned long) buf, npages, 1, 0, pages, NULL);
up_read (¤t-—>mm—>mmap_sem);

where a read lock is placed around the user-space memory region while the access is obtained.

One important thing to keep in mind is thal one obtaing only the pointer to the struct page that
contains the user address. To gel a useful kernel address for the page one has to usc macros and
functions such as:

#include <linux/pagemap.h>

char #kbuf = page_address (pages[il);
or do

char *kbuf = kmap (pages[il);

gﬁéﬁap(pages[i]);

The second form also handles the case of high memory, but one has to be sure to do the unmapping
when done. (In interrupt handlers, one needs to use the functions kmap_atomic(), kummap, atomic(),
but that can’t happen when using get_user_pages () since you must be in process context anyway.)

Note that unless the buffer happens to be page-aligned, one only knows that the user address lies
somewhere in the page; the offset is not furnished. One can produce page-aligned user memory

with functions such as posix_memalign(), or use utilities which are alignment aware, such as dd.
Programs such as cat are not.

It is also necessary to cleanup after any modification of the user pages; otherwise corruption may

ensue as the virbual memory system has been bypassed. This means marking modified pages as dirty
and releasing themn from the page cache:

lock_page (pages[il);
set_page_dirty (pages[il);
unlock_page (pages[il});
page_cache_release (pages[i]);

18.6 Memory Mapping

When a file is memory mapped the file {or part of it) can be associated with a. range of linear ad-

dresses. Input and ontput operations on the file can be accomplished with simple memory references,
rather than explicit 1/O operations.

202 CHAPTER 18. TRANSFERRING BETWEELN USER AND KERNEL SPACE

"I'his can also be done on device nodes for direct access to hardware devices; in this case the driver
must register and implement a proper mmap () entry point.

This method is not useful for stream-oriented devices. The mapped area must be a multiple of
PAGE_STZE in extent, and start on a page boundary.

I'wo basic kinds of memory mapping exist:
s In a shared memory map any operation on the memory region is completely equivalent o

changing the [ile it represents. Changes are committed to disk (with the usual delays) and any
process accessing the file or mapping it will see the changes.

e In a private memory map any changes are not committed to disk and are not scen hy any
other process. This is more efficient, but by design is used for a read only situation, or when
the final saving of data. is to be done by wriling to another file.

Memory mapping can be more efficient than normal disk access, particularly when [iles arc being
shared by multiple processes, each one of whom can share access to certain pages, thereby minimizing
mewmory usage and speeding access times.

18.7 User-Space Functions for mmap()

From the uger side, memory mapping is done with:

#include <unistd.h>

#include <sys/mman.h>

void *mmap {veid #start, size_t length, int prot, int flags, int fd, off % offset);

int munmap (void *start, size_ % length);

"This requests the mapping into memory of length bytes, starting at offset offset, from the file
gpecified by £d. The offset must be an integral number of pages.

The address start is a preferred address to map to; if 0 is given (the usual case), mmap () will choose
the address and put it in the return value.

prot is the degired memory protection. It has bits:

"Table 18.2: mmap() memory protection bits

Value Meaning

PROT_EXEC Pages may be exccuted.

PROT_READ Pages may be read. ’
PROT_WRITE Pages may be written.

PROT_NONE Pages may not be accessed.

18.7. USER-SPACE FUNCTIONS FOR MMAP()

203
flags specifies the type of mapped object. Tt has bits:
Table 18.3: mmap() flags
Value Meaning '
MAP_FIXED If start can’t be used, fail.
MAP_SHARED Share the mapping with all other processes.
MAP_PRIVATE Create a private copy-on-write mapping.
1

E,]:ilther MAP_?HARED.or MAP_PRIVATE musi be specified. Remember, a private mapping does not
change the file on disk. Whatever changes are made will be lost when the process terminates

Othe1.~ non—POSp(flags can be specificd (see man mnap.) In particular, the MAP_ANONYMOUS fla
permits a mapping only in memory, without a file association. B y

Here’s a simple example of using an s me _—
and child: p g anonymous memory mapping to share memory between a parent

#include <stdlib.h>
#include <gtdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/wait.h>

int main (int argc, char **argv)

{
int fd = -1, size = 4096, status;
char *area;
pid_t pid;

area =
mmap (NULL, size, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS, £4d, 0);

pid = fork (};
if (pid == 0) { /* child %/
strcpy (area, "This is a message from the child");
printf ("Child has written: ¥s\n", area);
exit (EXIT_SUCCESS);
}
if {pid > 0) { /* parent */
wait (&status);

204 CHAPTER 18. TRANSFERRING BETWEEN USER AND KERNEL SPACE

printf ("Parent has read: %s\n", avea};
exit (EXIT_SUCCESS);

T
exit (EXIT_FAILURE);

munmap () deletes the mappings and causes further references to addresses within the range to generate
invalid memory refercnces.

Sec man mmap for further information on error codes.

18.8 Driver Entry Point for mmap()
From the kernel side, the driver entry point looks like:

#include <linux/mm.h>

int (#mmap) (struct file *filp, struct vm_area_struct #vma};

‘T'he vma_area_struct data structure is defined in /usr/src/linux/inchide/linux /mm.h and con-
taing the important information. The basic elements are:

struct vm_area_struct {

unsigned long vm_start; /* Qur start address within vm_mm. */
unsigned long vm_end; /% The first byte after our end address within vm_mm. */

pgprot_t vm_page_pxot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, listed below. */

/% Function pointers teo deal with this struct. */
struct vm_operatiomns_struct * vm_ops;

/% Information about our backing store: */
unsigned long vm_pgoff; /* Offset (within ym_file) in PAGE_SIZE
units, *not* PAGE_CACHE_SIZE */

+;
The vm_ops strocture can be used to override default operations, Pointers can be given for functions
to: open(), close(), ummap(), protect(), syncQ, advice(}, swapout (), swapin(}

A simple example serves to show how the fields are used:

#include <linux/mm.h>

int my_mmap (struct file #file, struct vm_area_struct *vma)
{
if(remap_pfu_range (vma, vma->vm_start, vma—>vm_pgoff,
vyma->vm_end-vma->vm_start, vma—>vm_page_prot))

18.8. DRIVER ENTRY POINT FOR MMAP()

retarn -EAGAIN;

return 0;

¥

205

Most of the work is done by the function rema i ‘
. p_pin_range(). Note that functi
mapping memory above the 4 GB barrier. & at. this ction does allow

Here is a simple example of a program to test the mmap() entry:

f#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#incilude <fentl.h>
##include <errno.h>
#include <sys/mman.h>

#define DEATH(mess) { perror(mess); exit(errno); }

int main (int arge, char #*kargy)

{

int £d, size, rc, j;
char *area, *tmp, *nodename = "/dev/mycdrv";
char c[2] = "CXv;

if (arge > 1)
nodename = argv[1];

size = getpagesize (J; /* use one page by default */
if {argc » 2)

size = atoi (argv[2]);
printf (" Memory Mapping Node: Y%s, of size %d bytes\n", nodename, size);

Fl

if ((fd = open (nodename, O_RDWR)) < O}
DEATH ("problems opening the node ");

area = mmap (NULL, size, PROT_READ | PROT WRITE, MAP_SHARED, fd, 0);

if (area =— MAP_FATLED)
DEATH ("error mmaping®};

/% can close the file now */

close (fd);

/* put the string repeatedly in the file */

tmp = area,;

for {j = 0; j < size - 1; j += 2, tmp += 2)
memcpy {(tmp, &c, 2);

/* just cat out the file to see if it worked %/

rc = write (STDOUT_FILENO, area, size);

CHAPTER 18. TRANSFERRING BETWEEN USER AND K ERNEL SPACE

206
if (rc != size)
DEATH ("problems writing"};
exit (EXIT_SUCCESS);
}

Here is a simple driver with a mmap () entry point:

/* Sample Character Driver with mmap’ing */

#incinde <linux/module.h> /* for modules */

#include <linux/fs.h> /% file_operations */

#include <linux/uaccess.h> /* copy_(to,from)_user */.
finclude <linunx/init.h> /* module_init, module_exit *x/
#include <linux/slab.h> /% kmalloc */

#include <linux/cdev.h> /* cdev utilities */

#include <linux/mm.h> /% remap_pfn_range */

#define MYDEV_NAME "mycdrv"

static dev_t first;

static unsigned int count = 1;

static int my_major = 700, my minor = 0;
static struct cdev *my_cdev;

static int mycdrv_ mmap (struct file xfile, struct vi_area_struct *vma)

! . .
printk (KERN_INFO "I entered the mmap function\n"};
if (remap_pfn_range {vma, vma->vm_start,
vma—>vm_pgoff,
vma->vm_end - vma->vm_start, vma->vm_page_prot)) {
return —~EAGAIN;
+

return 0;

}

/# don’t bother with open, release, read and write ®/
static struct file_operations mycdrv_fops = {
.owner = THIS_MODULE,
.mmap = mycdrv_mmap,
}
static int

{

__init my_init {void)

first = MKDEV (my_major, my_minor} ;

register_chrdev_region (first, count, MYDEV_NAME) ;

my_cdev = cdev_alloc ();

cdev_init (my_cdev, kmycdrv_fops);

cdev_add (my_cdev, first, count); . . .

printk (KERN_INFO "\nSucceeded in registering character device %s\n",
MYDEV_NAME) ;

return 0;

18.9. RELAY CHANNELS 207

}
static void __exit my_exit (void)
{
cdev_del {my_cdev};
unregister_chrdev_region (first, count);
printk (KERN_TNFO "\ndevice unregistered\n®):
}

module_init (my_init);
module_exit (my exit);

MODULE_AUTHOR ("Jerry Cooperstein®);
MODULE_DESCRIPTION ("MCGDULE_DESCRIPTION_NAME"):
MODULE_LICENSE ("GPL v2");

18.9 Relay Channels

One often comes up with the need to transfer information between kernel-space and user-space, but
not all needs are the same. One may or may not need bi-directionality, efliciency, or promptness. Or
one may be working with or without a device driver, and have large or small amounts of data.

'The Relay Channel inferface (formerly known as relayfs) provides a simple to usc mechanism that
works beautifully when the dircction is one way: from kernel to nser.

Kernel clients fill up channel buffers with no special constraints on the data form. Users get access

to the dafa with normal system calls, generally read() and/or mmap(), exercised on data files (by
default one for each CPU) that are treated much like normal pipes.

For each relay channel, there is one buffer per CPU. In turn, each buffer has one or more sub-buffers.

When a sub-buffer is too full to fit a new chunk of data, or message, the next buffer (if available)
is used; messages are never split between sub-buffers {s0 & message should not be bigger than a
sub-buffer.) User-space can be notified that a sub-buffer is full.

The buffer can be set up in either overwrite or no-overwrite mode (the default); in the second mode,
kernel clients will block until readers empty the buffer.

When the wuser-space application accesses the data with read() calls, any padding at the end of
sub-buffers is removed and the buffers are drained.

When user-space application accesses the data with mmap() calls, the entire buffer {including all sub-

buffers) must be mapped and no draining occurs. This is more efficient than Jjust using reads, but is
also more complex.

Here’s a complete list of the system calls that can be used on a relay channel:
e open(), close(}: open and close an existing channel buffer. If no other process, or kernel
client, is still using the buffer, the channel is freed upon closing.

» read(): Consume bytes from the channel. In no-overwrite mode it is fine if kernel clients are

writing simultaneously, but in overwrite mode unpredictable outcomes can happen. Sub-buffer
padding ig not seen by readers.

o mmap(), munmap(): The entire buffer must be mapped and there is no draining.

208 CHAPTER 18. TRANSFERRING BETWEEN USER AND KERNEL SPACE

o sendiile(): Drains like a read.

e poll(): User applications are notified when a sub-buffer boundary is reached, and the flags
POLLIN, POLLRDNCRM, POLLERR are supported.

While the work of this mechanism could be done nsing other methods, such as using the /proc
filesystem, ioctl() commands on either real or pseudo devices, improper use of printk() statements,
or worst, accessing a log file directly from the kernel, the use of relay channels oflers a clean {and
approved) method and should be considered strongly.

18.10 Relay API

Opening and closing & relay channel is done with

#include <linux/relay.h>

struct rchan *relay_open({const char *base_filename,
struct dentry *parent,
size_t subbuf_size,
size_t n_subbufs,
struct rchan_callbacks *cb
void #private_data);

void relay_close{struct rchan *chan);

which associates a file with the channel for each CPU; e.g., if base_filename = "my_chan", the files
will be named my_chan0, my_chani, my.chan2. The associated files will appear in the direclory
pointed to by parent; if this is NULL, they be in the host filesystem’s root directory.

Each of the n_subbufs sub-buffers is of size subbuf_size, so Lhe total size ol the buifer is
subbuf_size * n_subbufs. Writes by kernel clients should not be bigger than subbuf_size gince

they can’t be split across sub-buflers.

When one wants Lo write inlo a relay channel, it is done with:
void relay_write(struct rchan #*chan, const void *data, size_t length);

and the information will appear in the associated pseudofile. The final argument to relay_o en()
is to a table of callback functions:

astruct rchan_callbacks {

int (#subbuf_start) {(struct rchan buf *buf,
void *subbuf,
void #prev_subbuf,
size_t prev_padding);

void (*buf_mapped) (struct rchan_buf *buf,
struct file *filp);

void (*buf_unmapped) (struct rchan_buf *buf,
struct file #filp);

struct dentry *{*create_buf_file)(const char *filename,
stroct dentry *parent,

18.11. ACCESSING FILES FROM THE KERNEL 209

int mode,
struct rchan_buf *buf,
int *is_global);

int (#remove_buf_file) (struct dentry *dentry);

subbuf_start () is called when one swilches to a new sub-buffer. buf_mapped(), buf unmapped ()
are called when the buffer is memory mapped or unmapped. B

create_buf_file() , 'remove_buf_file() create (and remove) the files associated with the relay
cha,nflel. Note ﬁhat it the parameter is_global is not zero, there will be only one file even on
multiple LCI?UE gl that case you will explicitly have (o take care of any race conditions. The mode
argument gives the usual permigsions and parent is obviousl i i m

sly the parent directory. fil :
be created /removed by this method. g vlony: Frlename hos to

There is no apriori requirement for where these files should i i
,) s go. A convenient pl
filesystem. In that case one could have: place Is the debugts

static struct dentry

*create_buf file_handler{const char *filename,
struct dentry #*parent,
int mode,
struct rchan_buf *buf,
int *is_global)

{
return debugfs_create_file{filename, mode, parent, buf,
. &relay _file operations);
static int remove buf_file handler(struct dentry *dentry)
{
debugfs_remove (dentry) ;
return 0;
}
static struct rchan callbacks relay callbacks =
{
-create_buf_file = create_buf_ file_handler,
remove_buf_file = remove_buf_file handler,
};

Whe}:e Ielay file OpeIatlonS 15 Lhe file Ope:[a.tlons Si] 10 1[!!(3 (IEI.EI li(l in /sy NIE er-
/ /I.IS / (:/11 /k i

"There arc additional callback and utility functions that can be used with relay channels, and one can
take control at a Jower level than we have indicated. Working with memory mapping re,quires a little
more work than just using read() calls. However, we would recomrmend starting with what we have
described before trying to master some of the infricacies, especially when working in overwrite mode.

18.11 Accessing Files from the Kernel

A perennigl qucétion is “HOW do I do file I/O from within the kernel?™ This is 2 bad idea. Tt is full of
problems involving, stability, race conditions, and security. For an excellent explanation of why this

210 CHAPTER 18. TRANSFERRING BETWELN USER AND KERNEL SPACE

operation is really only suitable as a lcarning exercise, sce http: / /www.cs. helsinki.fi/linux /linux-
kernel /2003-23 /1447 html.

You can’t accomplish file 1/0O without a process context; the kernel has to borrow one or creale one;
borrowing is extremely dangerous as you may corrupt the context of the loaner; creating requires a
new kernel thread.

Tor a similar method to what is given below, sec the article by Greg Kroah-Hartman at
http:/ /www.linuxjournal.com/article/8110.

One must set the address space to a user one before dealing with files, and then reset it when done.
The macros for handling this are:

get_ds(};
get_£5();
set_fs(x);

The macro set_fs(x) sets which data segment to use, where x can be KERNEL_DS or USER_DS. The
macro get_ds{)} is just a shorthand for KERNEL_DS. The full definitions can be found in Jusr /sre
/linux/arch/x86/include/asm/uaccess.h on most architcctures.

While kernel developers have made directly dealing with files deliberately difficult, however, there
does exist a kernel_read() function that can be used, and we’ll define a kernel_write{) function
below to go along with it.

Here'’s an example of how to do it:

Example:

#include <linux/module.h>
#include <linux/init.h>
#inclunde <linux/uaccess.h>
#include <iinux/slab.h>
#include <linux/fs.h>

static char #filename = "/tmp/tempfile";
module param (filename, charp, S_IRUGD);

int kernel_write {struct file *file, unsigned long oifset,
' char *addr, unsigned long count)
{

mm_segment_t old_is;

loff_t pos = offset;

int result;

old_fs = get_fs (};

set_fs (get_ds ();

/% The cast to a user pointer is valid due to the set_fs() */
result = vis_write (file, (void __user *)addr, count, &pos);
set_fs (old_fs);

return result;

18.11. ACCESSING FILES FROM T'HE KERNEL

#define NBYTES_TO_READ 20

/* adapted from kermel ryead() in kernel/exec.c */

static int __init my_init (void)
{
struct file *f;
int nbytes, j;
char *buffer;
char newstring[] = "NEWSTRING";

buffer = kmalloc (PAGE_SIZE, GFP_KERNEL);
printk (KERN_INFD "Trying to open file = %s\n", filename);
f = filp open (filename, U_RDWR, S_IWUSR | S_IRUSR);

if (IS_FRR (£)}) {
printk (KERN_INFO “error opening ¥%s\n", filename):
kfree (buffer); |
return —-EI{;

}

nbytes = kernel_read (£, f->f_pos, buffer, NBYTES_TO_READ):

printk (KERN_INFO "I read nbytes = ¥d, which were: \n\n", nbytes) ;
for (j = 0; j < mbytes; j++) ,
printk (KERN_INFD "¥c", buffer[il1);

strcpy (buffer, newstring);

nbytes = kernel write (f, f->f_pos, buffer, strlen (newstring} + 1);
printk (KERN_INFD "\n\n I wrote nbytes = J/d, which were Y%s \n" nbytes
newstring); ' |

filp_close (£, NULL);
kfree (buffer);

return 0;
¥
static void __exit my_exit (void)
{
printk (KERN_INFO "\nclosing up\n"};
}

module_init (my_init);
module_exit (my_exit);

Such a method should never be used in code that is submitted to the kernel tree.

211

212 CHAPTER 18. TRANSFERRING BETWEEN USER AND KERNEL SPACE

18.12 Labs

Lab 1: Using get_user() and put_user().

Adapt your character driver to use get_user() and put_user().

Chapter 19

Lab 2: Mapping User Pages

Use the character device driver, adapt it to use get_user_pages () for the read() and write () entry
points.

Sleeping and Wait Queues

To properly exercise this you’ll need to use a page-aligned utility such as dd, or write page-aligned
reading and writing programs.

Lab 3: Memory Mapping an Allocated Region
Write a character driver that implements a mmap() entry point that memory maps a kernel buffer,
allocated dynamically (probably during initialization).
There should also be read() and write() entry points.

Optionally, you may want to use an ioct1() command to tell user-space the size of the kernel bufler
being memory mapped.

Note: This is not an eagy exercise bo do properly, so if time is lacking you may merely experiment
with the solutions.

Lab 4: Using Relay Channels. e d how We'll discuss wait queues. We'll consider how tasks can be put to
inizi);uatz . Ozlvl .Lhe%rr can be woken up. We'll also consider the poll() entry point, and methods of
Write a kernel module that opens up a relay channel and makes the associated files visible in the Pl handiing from user-space..

debugfs filesystem. 19.1 What are Wait Queunes?

| | ab are Walt Quenes?l 213

Moke s vou mount the losystemn " necessary) with 19.2 Going to Sleep and Waking Up 214

19.3 Going to Sleep Details ., e, 216

e subugte none oye/hermetfdeimg 19.4 Exclusive Sleeping e e e e e 218
19.5 Waking Up Details e . 21

- | | . _ _ 19.6 POIlng - oo oo 0

Have the initialization routine write a series of entries into the channel. While the kernel module is 19.7 Int t H ing in User-Space R -

Have tho iialseion routine e o serics of enlei .7 Interrup andling in User-Space0 0..u... 221

198 Labs 222

If you read more than ouce on the open lile descriptor what do you see?

For more advanced exercises, you might try making sure your kernel client writes over sub-buffer
boundaries, or writes into the channel from other functions such as an interrupt routine, or other

entry points. 19.1 What are Wait Queues?

Wait queues arc used when a task running in kernel mode has reached a condition where it needs

t alt for s0mMe co1 dlt 1 to b f‘llﬁlled I‘OI‘ 11 I Iilay 11158 '() W [§) lla ve G
O W 10] . StanCG t i E
. . d alt f T tm"l tU arrive on a

214 CITAPTER 19. SLEEPING AND WATT QUEUILS

At such times it is necessary for the task to go to sleep until whatever condition or resource it is
waiting lor is ready. When {he resource becomes available, or the condition becomes true, (perhaps
signalled by the arrival of an inlerrupt) it will become necessary to wake up the sleeping task.

There can be many wait queues in the system and they arc connected in a linked list. In addition
more than one task can be placed on a given wail queue.

Another way to understand wait quenes is to think of task organization and queues, There is a
linked list of all tasks who have TASK_RUNNING in the state field of their task struct, called the
runqueue. A task which is scheduled out but would like to run as soon as a timeslice is available is
not sleeping; it still has TASK_RUNNING as ils stale.

Sleeping tasks (those with a state of TASK_INTERRUPTIBLE, TASK_UNINTERRUPTIBLE, or
TASK_KILLABLE) go instead into one of many possible wait queues, each of which corresponds to
getting woken up by a particular event or class of events, at which point the sleeping task can go
back to the runguneue.

The sleeping and waking up functions come in two forms, interruptible and uninterruptible.
Uninterruptible sleep is not woken up by a signal and as such should be rarely used, especially in
device drivers. It is quite difficult to get out of a task hung in this situation; short of a reboot one
may be able to canse a wake up function to be called by terminating an ancestor process.

"The TASK_KILLABLE state is woken up only a fatal signal (whilc TASK_INTERRUPTIBLE wakes up with
any signal.} Tt was introduced in the 2.6.25 kernel.

When a wait queuc is woken up, all tasks on the wait queue are roused (unless an exclusive sleep is
used, as we shall see.)

1t is very easy Lo hang a system with improper use of wait queues. In particular, kernel threads of
execution such as interrupt service routines should never go to sleep.

The data structure used by wait queues is of the type wait_queue_head_t, usually just called a wait
queue. Tt is explicitly declared and initialized with with the statements

#include <linux/sched.h>

wait_queune_head_t wq;
init waitqueue_head {(&wq);

1l the wait queue is not allocated at run time it can be declared and initialized with the macro
DECLARE_WAIT QUEUE_HEAD(wq};

Don’t forget to initialize a wait qucue.

19.2 Going to Sleep and Waking Up

Now that we have set up a wait qucue, we need to use functions for putting a task to sleep and for
waking it up. These are

#include <linux/wait.h>

19.2. GOING TO SLEEP AND WAKING UP 215

wait_event {wait_quene_head_t wq, int condition);
wait_event_interruptible (wait_queue_head_t W, int conditiom);
wait_event killable (wait_queue_head_t wq, int condition) H

void wake_up (wait gneue_head_t *wq);
void wake_up_interruptible (wait_queue_head t *uq);

The wait_event () calls are actually macros, not functions. They take wq, not *wq, as their argument,

The proper wake up call should be paired with the originating sleep call.

‘ : However,
wait_event_killable() should be paired with wake_up(), which isn't obvious.) (

In general you will want to use the interruptible wait functions which return 0 if they return due
to & wake up call and ~-ERESTARTSYS if they return due to a signal arriving. The other florms are not

aborted by a signal and arc only used by critical sections of the kernel, such as while waiting for a
swap page to be read from disk.

When you use the interruptible forms, you’ll always have to check upon awakening whether you woke

up because a signal arrived, or there was an explicit wake up call. The signal_pending(current)
macro can be used for this purpose.

The condition test has two important purposes:

o It helps avoid the race condition in which a task is designated to sleep but the wake up call

arrives belfore the change in state is complete; the condition is checked before actually putting
the task to sleep.

e ‘The cond'ition is checked upon waking up and if it is not true the task remains asleep. This
helps avoid another class of race conditions where a task is put to sleep again before it has a
chance to really wake up.

You will st,?ll I}ave to call one of the wake_up functions when using these macros; they do not just
set up a spinning vhile loop until the argument given in condition evaluates as truc (non-zero).

Sometimes you want to ensure you don’t sleep too long. For this PUrpose one Can use:

wait_event_ timeout (wait_queue_head_t wq, int conditiom, long timeout);

wait_event_interruptible_timeout (wait_queue_head_t wq, int condition, long timeout);
H

where the timeout.is specified in jiffies. If the task returns upon timeout, these functions return 0.
If they reburn earlier, they return the remaining jiffies in the timeout period. If the interruptible
form returns due to a signal, it returns ~ERSTARTSYS.

The wakirllg fun‘ctions will rouse all sleepers on the specified wait queue. There is no guarantee about
the order in which they will be woken up; they will be scheduled in by priority algorithms rather than

FIFO or LIFO. Furthermore, the tasks can be woken up on any CPPU. A little more control can be
obtained with the function:

void wake_up_interruptible_sync (wait_gueue_head_t *wg) ;

whic.h. che(’:ks whether the task being woken up has a higher priority than the currently running one
and il so, invokes the scheduler if possible. However, this is rarely done. ,

‘Thus a simple use of wait queues would include a code fragment like:

216 CHAPTER 19. SLEEPING AND WAIT QUEUES

#include <linux/sched.h>
DECLARE_WAIT_QUEUE_HEAD(wq)

static int funi (...)

{

é;intk(KERN INFC "task %i (%s) going to sleepin”, current->pid, current->comm);
. N ; av)
wait_event_interruptible(wq, dataready); .) .
printk(KERN_INFO "awoken ¥i (Y%s)\n", current->pid, current >comm} ;
if (signal_pending (current))
return —ERESTARTSYS;

dataready = 0;

}

static int fun2 (...)

{
-) . . .
printk (KERN_INFO "task %i C(ls) awakening sleepers...\n", current->pid, current comm} ;

dataready = 1;

Wake_up_iﬁterruptible(&wq);

¥

i ; 5 kind of
(Note the variable dataready should probably be an atomic one, or be protected by some
tock.)

19.3 Going to Sleep Details

Let’s look in some detail at the code for entering a wait, or going to sleep. The macro wait_event ()
is defined in /usr/src/linux/include/linux/wait. h:

- \
5.6.31: 196 #define wait_event(wqg, condition) \
2.6.31: 197 do { N
2.6.31: 198 if {condition) .
2.6.31: 199 break; N \
2.6.31: 200 __wait_event{wqg, condition);
2.6.31: 201 } while (0}
. o \
9.6.31: 171 #define __wait_event{wq, condition) .
2.6.31: 172 do { \
2.6.31: 173 DEFINE_WAIT(_ _wait}; N
2.6.31: 174 \
.31: 175 for (;;) L .
2.2 21' 176 prepare_to_wait (kwq, &__wailt, TASK_UNINTERRUPTIBLE}; t
2.6.31: 177 if (conditiomn) .
2.6.31: 178 break; N
2.6.31: 179 schedule(}; .
2.6.31: 180 } - \
2.6.31: 181 finish_wait (&wq, &__wait);
2.6.31: 182 } while (0)

19.3. GOING TO SLEEP DETAILS 217

The first thing to do is to check if condition is true, and if so, avoid going to slecp ab all. This

avoids the race condition in which {he condition is reset and a wake up call is issued alter the task is
requested to go to sleep but before it actually does so.

Then one enters the macro where the real work is done, __wait_event (), where the first thing to do
is DEFINE_WAIT (name), which is equivalent to:

walt_queue_t name;
init_wait (&name);

which creates and initializes the wait queue.

The next thing to do is to add the wait queuc entry to the

queue, and reset the state of the task,
which is done by:

void prepare_to wait (wait queue_head_t *queue, wait queue_t *wait, int state);

Once again one checks condition to avoid a race condition, e.g., a missed wake up call, in which case
the sleep is once again avoided. Assuming this condition i not true, one calls schedule() to schedule
in another task; the current one can’t be scheduled in because its state is TASK_UNINTERRUPTIBLE.

The next lincs of code will only be entered after the state has been roset by a wake up call, and the
task is again available for scheduling and has been granted a time slice. The for () loop makes sure
the condition is really true, and if not continues sleep until it is.

When the sleep is truly finished, one calls:
void finish wait {(wait_quene_head_t *quene, wait queue_t *wait);

which does whatever cleanup is needed.

The wait_event_interruptible() macro is almost the same except that it sets the state to
TASK_INTERRUPTIBLE and the for () loop is replaced with:

2.6.31: 246 for (5;) { \
2.6.31: 247 prepare_to_wait (&wqg, &__wait, TASK_INTERRUPTIBLE); \
2.6.31: 248 if (condition) \
2.6.31: 249 break; \
2.6.31: 250 if (!signal_pending(current)) { \
2.6.31: 251 schedule(); \
2.6.31: 252 continue; \
2.6.31: 253 ¥ \
2.6.31: 254 ret = ~ERESTART3YS; \
2.6.31: 255 break; \
2.6.31: 256 } \
2.6.31: 257 finish wait(&wq, &__wait); \
2.6.31: 258 } while (Q)

which checks to see if the sleep ended because of an incoming signal, and if so returns the value
-ERESTARTSYS.

The timeout variations use for the for() loop:

CHAPTER 19. SLEEPING AND WAIT QUEUES

218

2.6.31: 207 for (3;) { \
2.6.31: 208 prepare_to_wait(&wg, &__wait, TASK_UNINTERRUPTIBLE) ; \
2.6.31: 209 if (condition) \
2.6.31: 210 break; \
2.6.31: 211 ret = schedule_timeout(ret); \
2.6.31: 212 if (tret) \
2.6.31: 213 break; \
2.6.31:; 214 } \

in which schedule_timeout() eauses the scheduler to get called if the timeout period clapses.

19.4 Exclusive Sleeping

So far we have dealt only with so-called non-exclusive sleeping tasks. Tor instance, a number of
tasks may be waiting for termination of a disk operation, and once it has completed they will all need

to wake up and resume.

I more than one task is waiting for exclusive access to a resource {one that only one can use at a
time) then this kind of wake up is inefficient and leads to the thundering herd problem, where all
sleepers are woken up even though only one of them can usc the resource at a time.

In this case new functions are required. Setting up the wait involves the inline macro function:
wait_event_interruptible_exclusive (wait_gueue_head t wq, int conditiomn);

(At this time, there is no non-interruptible equivalent convenience macro, but one can construct a
non-interruptible sleep from lower level primitives.)

The usual wake up functions can be used; in this case only one sleeper will be woken up. If more
control is needed a number of new wake up functions can be used:

void wake_up_all { wait_queue_head t *wq) 5
void wake_up_interruptible all (wait_queue_ head_t *wq) ;
void wake_up_nr (wait_gqueue_head_t *wg, int ur)

void wake_up_sync_nr (wait_queue_head_t #wq, int nr)
void wake_up_interruptible nr (wait_gueue_head t *uwqg, int nT)
void wake_up_interruptible_sync_nr (wait_queue_head_t *wqg, int nr)

The ones with all in the name wake up all tasks in the queus, just as in the non-exclusive case, but
those with _nr awaken only nr tasks (typically nr=1.)

19.5 Waking Up Details

All the wake up calls are macros that invoke the basic -_wake_up(} call and are defined in
/usr /sre/linux/include/linux /wait.h:

__weke_up(x, TASK_NORMAL, 1, NULL)

2.6.31: 149 #define wake_up{x)
__wake_up{x, TASK NORMAL, nr, NULL)

2.6.31: 150 #define wake_up_nr{x, nr)

19.5. WAKING UP DETAILS 219

2.6.31: 151 #define wake_up_all{x}
2.6.31: 152 #define wake_up_locked{x)

__wake_up(z, TASK_NORMAL, O, NULL)
-wake_up_locked((x), TASK_NORMAL)

2.6.31: 1B3
i.g.:i: ig: X:eiine wake up_interruptible(x) —.wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
.6.31: efine wake up interruptible_nr(x, nr} __wake_up(T TRLE
=) = x, TA
. » p SK_INTERRUPTIBLE,
2.6.31: 156 #define wake_up_interruptible_all(x) __wake_up(x, TASK_INTERRUPTIBLE, 0
NULL}) C

2.6.31: 157 #define wake_ up_interruptible_sync(x) __wake_up sync((x)
TASK_INTERRUPTIBLE, 1) B ,

where
TASK_NORMAL = TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE

The code for the core __wake_up () function is in /usr/src/linux/ kernel /sched.c:

2.6.31:5652 void __wake_up(wait quene_head_t *q, unsigned int mode
2.6.31:55653 int nr_exclusive, void *key) '
2.6.31:5654 {

2.6.31:5555 unsigned long flags;

2.6.31:65586

2.6.31:5557 spin_lock_irgsave (&g->lock, flags);

2.6.31:6558 - ~_wake_up_common(q, mode, nr_exclusive, 0, key);
2,6.31:5559 spin_unlock_irgrestore (kq->lock, flags); ’
2.6.31:5660 }

2.6.31:55661 EXPURT SYMBOL{__wake up);

which takes out an interrupt blocking spinlock, and then passes the work off to __wake_up_common ():

3.6.31:5528 static void __wake up_common(wait queue_head t #*q, unsigned int mode
.6.31:5529 int nr_exclusive, int sync, void *key) ’
2.6.31:5530 , g
2.6.31:5531 wait_quemwe_t ¥curr, *next;
2.6.31:6b32
2.6,.31:5533 list_for_each_entry_safe(curr, next, dg->task_list, task list) {
2,6.31:5534 unsigned flags = curr->flags;
2.6.31:5536
2.2.:1::236 if {(curr->func(curr, mode, sync, key) &&

.6,31:65637

fi i

20300587 . (flags & WQ_FLAC_EXCILUSIVE) && !--nr_exclusive)
2.6.31:55639 }
2,6.31:5540 }

I’;;lc function cycles thl"ough the linked list of wait queues, and for each tagk placed on a wait queue it
calls the wake up function (curr->func()) which by default is set to be default_wake_function()

-(The ability to use an alternative wake up function appeared in the 2.6 kernel) After doing so it

(lh 2CKS l- see et hel or IlOt lt 15 al € 11181 p p Y
E(k O 5e Wh XC ve WalL &n(i lf S0 propet de rement e Iillllll)el !
‘ 3 1 C S th (8]

‘The defanlt. wake up [unction in turn just calls try_to_wake_up():

220 CHAPTER 19. SLEEPING AND WAIT QUEUES

2.6.31:5512 int default_wake_function(wait_cueue_t *curr, unsigned mode, int syunc,
2.6,31:5513 void *key}

2.6.31:5614 {

2.6.31:65615 return try_to_wake_up(curr#>private, mode, sync);

2.6.31:5516 }

2.6.31:5617 EXPORT_SYMBOL(default wake functiom);

Now we actually do the wake up with
int try_to_wake_up (task t * p, unsigned int state, int sync);

which is a long and complicated function, mostly because of the necessity of ensuring a task is not
already running on another cpu. If not, it will set the state to TASK_RUNNING, and enable the task to
be rescheduled.

19.6 Polling

Applications often keep their eye on a number of file descriptors to sec whether or not it is possible
to do 1/0 on one or more of them at any given time. The application will either sit and wait for onc
of the descriptors to go active, or perhaps dedicate one thread for that purpose while other threads
do work.

Such multiplexed and asynchronous I /O is at the basis of the traditional Posix system calls select ()
and pol1(), as well as the Linux-only epoll system calls which scale the best to large numbers of
descriptors.

In order to make poll() work on a file descriptor corresponding Lo a character device, onc needs to
add the entry point to the file_operations table as ustal:

static struct file_operations mycdrv_fops = {
.owner = THIS_MCDULE,

.poll = mycdrv_poll,
};

static unsigned int mycdrv_poll (struct file *file, poll table * wait};

Whenever an application calls pol1(), select() or uses epoll this method will be called.

Tirst one must call the function
void poll_wait (struct file *filp, wait_head_queune_ % *wg, poll_table *wait);

for each wait queue whose change of status is to be noted.

Secondly one must return a bit-mask which can be checked to see which (if any) I/O operations are
available. A number of fags can be combined in this mask:

19.7. INTERRUPT HANDLING IN USER-SPACE

Table 19.1: poll() flags

21

[Value Meaning
POLLIN Normal or pricrity band data can be read without blocking.
POLLRDNORM Normal data can be read. Usually a readable device returns
POLLIN | POLLRDNORM
POLLRDBAND Priority band data can be read. (This flag is unused.)
POLLPRI High priot"ity out of band data can be read, causing select () to report
an exception.
POLLHUP Reaching end of file on device.
POLLERR An error has occurred.
POLLOUT The device can be written without blocking,
POLLWRNCRM - Normal data can be written. Usually a wrilable device returns
POLLOUT | POLLWRNORM
POLLWRBAND Priority band data can be written,

An example of an entry point might look like:

static unsigned int mycdrv peoll (struct file #file, poll_table * wait)

unsigned int revents = 0;
poll_wait (file, &wg.read, wait);
poll wait (file, &wq_write, wait};

if (atomic_read (&data_ready_to_read))
revents |= POLLIN | POLLRDNORM;

if (atomic_read (&data_ready_to_write))
revents |= POLLOUT | POLLWRNDRM;

return revents;

19.7 Interrupt Handling in User-Space

Device drivers written in user-space offer certain advantages:

¢ Potentially better security and stability.

222 CHAPTER 19. SLEEPING AND WAIT QUEUES

o Keeping the core kernel code base smaller.

s Avoiding some licensing constraints.

Of course not everyone would consider each one of these properties as an advantage.

However, it is already the case that many device drivers are written in nser-space either using the
iopl(), ioperm() commands to get application access to I/O ports, or are layered on top of in-
kernel lower-level drivers such as thosc for the parallel, serial or USB ports. Such is the case, for
example, with drivers for printers and scanners.

What is lacking in terms of infrasiructure is a general method of having a user-space driver handle
interrupts. The kinds of drivers mentioned above often work in polling modes; e.g., the X driver
checks for mouse activity many times per second by reading 1/0 ports instead of directly responding
to interrupts.

There have been active projects to do this; see http://lwn.net/Articles /127698 for a discussion
of the cffort led by Peter Chubb in which entries are created in the /proc file system for each IRQ
being dealt with. The user-space driver then sits on that entry either with a read(} or poll(} call,
unti! woken up by an interrupt arriving,.

There are difficulties such as the possibilities of losing interrupts if multiple interrupts arrive, spe-
cial problems with sharing interrupts, and trying to avoid too much polling which disturbs true
asynchronousness in the interrupt system and can lead to unacceptable latencies.

We will do an excrcise in which we implement such a method, using a special device node rather than
a [proc entry.

Karnal Kernet
Vergion Version
Naote Note

o The UIO project (Userspace I/0) was accepted in the 2.6.23 kernel

e Rather than working with the /proc directory the accepted vorsion creates special device
nodes.

e For a full discussion, see /fusr/src/linux/Documentation/DocBook Juio-
howto.tmpl.

19.8 Labs

Lab 1: Using Wait Queues

Generalize the previons character driver to use wait queues,

19.8. LABS 2
23

Have the read () function go to sleep until woken by a write () function.

rond and weite) (You could also try reversing

You may want to open up two windows and read in one window and then write in the other window
Try putting more than one process to sleep, i.e., run your test read program more than once simulta-

neously before running the write program to awaken th
: em. If you keep trac > pid’s
be able to detect in what order processes are woken. y P brackt of the pi’s you should

There are several solutions given:

e Using wait_event_interruptible(}. You may want i i i
! _ . 0 use at
variables used in the logical condition. ’ e atomie functions for any global

There are two solutions with this interface; 5
ol is interface; one that wakes up only one sleeper, one that wakes

o Using wait_for_completion(}.
¢ Using semaphores.

s Using read/write semaphores.

s Using exclusive waili ’ i
g waiting on the many readers solution.. How many processes wake up?

o - v - - .
II u Les Wli i I:E}! e(:ll() (811 (I(’ ?()l] 14 E};y see (llﬁe!elll IeS”HS tha }'
Y / bl L] s I].f Ol use tI]C Sl}.ppl]cd Slmple

Lab 2: Killable Sleep

Modi ly the Wait event () lab tO use wait aven i |5} S5 (3181
h = t klllable(. A i
_ o ; ,) “ T l‘eadlng PfOCeL > goeS tO Sl]j)7

$ kill -SIGCONT <pid>

followed by a kill signal, such as SIGKILI.

Lab 3: Using poll()

"Take the wait_event () solution and extend it to have a pol1() entry point.

You'll need an application that i ' i
pol oo pp at opens the device node and theg calls poll1{) and waits for data to

Lab 4: User-Space Interrupt Handling

Adapt the character driver with polling to handle a shared interrupt,

The read method should sl i g ; . .
ovensie. sleep until evenis are available and then deal with potentially multiple

224 CHAPTER 19. SLEEPING AND WAIT QUEUES

The information passed back by the rcad should include the number of events.
You can reuse the previously written testing program that opens the device node and then sits on it
with poll(} until interrupts arrive.

You can also test it with just using the simple read program, or doing cat < /dev/mycdrv and
penerating some interrupis.

Chapter 20

You can probably also implement a solution that does not involve pol1(), but just a blocking read.

Interrupt Handling and Deferrable
Functions

svtritiig,

We'll continue our examination of how the Linux kernel handles in-
terrupts, focussing on how the labor is split between top and bottom halves, and what some of the
methods are for implementation. We'll investigate the use of deferrable functions, including tasklets,
work queues, and spinning off kernel threads. Finally we'll consider the use of threaded interrupt
handlers.

20.1 Top and Bottom Halves 225
20.2 Deferrable Functions and softirgs 227
203 Tasklets e e e e e e e e e e e e e 228
20.4 Work Queues f e e e e e e e e e e e e e e .. 231
20.5 Creating Kernel Threads 0. 234
20.6 Threaded Interrupt Handlers e e e e e e 235
2007 Labs . . .t o e e e e e e e e e, 235

20.1 Top and Bottom Halves

Efficient intexrapt handlers generally have top halves and bottom halves.

225

226 CIIAPTER 20. INTERRUPT HANDLING AND DEFERRABLE FUNCTIONS

In the top half, the driver does what must be done as qu_ickly as possible, This may just mean
acknowledging the interrupt and getting some data off a device and into a buffer.

In the bottom half, the driver does whatever processing has been deferred. An interrupt handler is
not required to have a bottom hall.

Top Half

Technically speaking the top half is the interrupt handler. A typical top halt:
e Checks to make sure the interrupt was generated by the right hardware; this is necessary for
interrupt sharing.
e Clears an interrupt pending bit on the interface board.

e Docs what needs to be done immediately (usually read or write somethi.ng to/from the de:vicel.)
The data is usnally written to or read from a device-specific buffer, which has been previously

allocated.

e Schedules handling the new information later (in the bottom half.)

Example (using tasklets):

static struct my_dat { } my_fun_data;
gtatic void t_fun (unsigned long t_arg){ }
DECLARE, TASKLET (t_name, t_fun, (unsigned long) &my_data);

static void my_interrupt (int irg, void *dev_id)

{
top_half_fun ();
tasklet_schedule (&t_name);
return IRG_HANDLED;

¥

Bottom Half

A bottom half is used to process data while top half is available for de&!ing with new interripts.
Interrupts are enabled when a bottom half runs. Interrupts can be disabled if necessary, but generally
this should be avoided as il goes against the basic purpose of having a bottom half.

The various kinds of bottom halves behave differcutly:

e Fasklets can be run in parallel ou different CPUs, although the same tasklet can only Ee ;'lun
one at a time. They are never run in process context. 'l‘askle.ts .wﬂl' run only Qn the CPU that
scheduled them. This leads to better cache coherency, and SO{:‘I&IIZ&I]OH, as the La..si'det can never
be run before the handler is done, which leads to betier avoidance ol race conditions.

20.2. DEFERRABLIE FUNCTIONS AND SOFIIRQS 227

s Work queues run in process conlext, and thus sleeping is permitted. Because cach work
queue has its own thread on cach CPU, such sleeping will not, block other tasks. A bottom half
iraplemented in this fashion can run on a different CPU than the one that scheduled it.

Depending on the kind of bottom half, they are launched in slightly different ways, but the system
always checks whether anything needs to be done after an exception is handled and then runs any
quened up bottom halves. This includes:

o After a system call is completed.

o After any other exception is handled.

o After an interrupt is handled.

s When the scheduler selects the kernel process ksoftirqd to run.

Another way of implementing a bottom half is through maintaining a kernel thread. One starts
off the kernel thread upon device initialization or open, and then has i sleep until it has work to do.
Scheduling a bottom half then becomes waking up the thread to deal with the work, after which it
goes back to sleep. Killing such a thread when a driver is unloaded has to be done with care.

It is not required to have a bottom half; if there is little processing to be done, it may be more eflicient
to just do it in the top half, rather than incur the overhead of scheduling and launching a bottom
half, and having to be careful about synchronization questions.

20.2 Deferrable Functions and softirgs

Deferrable functions perform non-critical tasks at a later (deferred) time, usually as-soon as
possible. When the functions are run they may be interrupted.

There arc two main types: softirgs (of which tasklets are one kind) which run in interrupt context
and are not allowed to go to sleep, and workqueues, which run under a pseudo-process conlext and
are allowed to sleep.

There arc a number of different kinds of softirgs defined. Tn order of decreasing priority they are:

Name Priority Purpose

HI_SOFTIRA 0 High-priorily tasklets.
TIMER_SOFTIRQ 1 Scheduled timers,
NET_TX_SOFTIRQ 2 Network packet transmission.
NET_RX_SOFTIRQ - 3 Network packet reception.
BLOCK_SOFTIRQ 4 Block device related work.

228 CHAPTER 20. INTERRUPT HANDLING AND DEFERRABLE FUN CTIONS

TASKLET_SOFTIRQ 5 Normal-priority tasklets.

SCHED_SOFTIRQ 6 Used in the CFS scheduler.

HRTIMER_SOFTIRQ 7 Used if high resolution timers are present.

The various kinds of deferred functions differ mostly in whether or not they operate in process contexl
and their behaviour on multi-processor systems.

Type Process | SMP Behaviour SMP Serialization
Con-
text? :
softir No Samte ones can be run on differcnt | Run on the CPU that schedules
4 CPUs simultaneously them and must be fully re-entrant.
tasklet No Can be run on simuktaneously on | Run on the CPU th‘at'scheduled
different CPUs, but not if they use | them and are thus serialized.
the same tasklet_struct. _—
workqueue | Yes Can be run on any CPU. Can be delayed and serialized.

Softirgs are called, or consummed in cither of two ways:

e After an interrupt is serviced the kernel checks if any soltirgs are pending; if so it executes them
in priority order.
» The kernel thread ksoftirqd|cpu] is scheduled in like other processes, and consumes them in

like fashion.

T'he second mechanism is required to prevent priority inversion causing sof'tirq stormg when a so[tn:'q
resubmits itself before finishing. o avoid this, resubmitted deferred functions that exceed a certain

backlog are scheduled in like other tasks, so that other work may proceed.

20.3 Tasklets

Tasklets are used to queue up work which can be done at 2 later time. They are frequenl,‘ly 11;ed
in interrupt service routines; a typical top half does whatever needs to.be done to gel (?ata olf1 or
onto a device and resets it and re-enables interrupts. Further data processing may be done in tasklets

while the device is ready for new dala.

20.3. TASKLETS 229

Tasklels may be run in parallel on multiple CPU systems. Howover, the same tagklet can not be tun
at the same time on more than one CPUJ.

A tasklet is always run on the CPU that scheduled it; among other things this optimizes cache usage.
{This however can canse delays which may not be worth the cache savings; work queues can be used
instead.) As a result, many kinds of race conditions are naturally avoided; the thread that quened
up the tasklet must complete before the tasklet actually gets run.

The tasklet code is explained in /usr/sre/linux/include/ linux/interrupt.h. The important data
structure is:

struct tasklet_struct{
struct tasklet_struct *next;
unsigned long state;
atomic_t count;
void (¥func) (unsigned long);
unsigned long data;

}

The func entry is a pointer to the function that will be run, which can have data passed to it through
data. The state entry is used to determine whether or not the {asklet has already been scheduled;
if s0 it can not be done so a second time.

The main macros and functions involving tasklels are:

DECLARE_TASKLET (name, function, data):
DECLARE_TASKLET DISABLED (name, functiom, data);

void tasklet_init (struct tasklet_struct *t,
void (*func) (unsigned long), unsigned long data);

void tasklet_schedule (struct tasklet_struct #t);
void tasklet_enable (struct sasklet_stract *t) ;
vold tasklet_disable (struct tasklet_struct *t):
void tasklet _kill (struct tasklet_struct *t);

A tasklet must be initialized before being used, either by allocating space for the structure and calling
tasklet_init (), or by using the DECLARE_. . () macros, which take care of both steps although they
must be used in the global space.

DECLARE_TASKLET () scts up a struct tasklet_struct name in an enabled state; the second form
DECLARE_TASKLET DISABLED() being used means the tasklet can be scheduled but won’t be run wuntil
the tasklet is specifically enabled.

The tasklet_kill(} function is used to kill tasklets which reschedule themselves.

When a tagklet is scheduled, the the inline function tasklet_schedule() is called as defined in
Jusr/sre/linux/include/linux /interrupt.h:

2.6.31: 464 static inline void tasklet_schedule(struct tasklet_struct *t)
2.6.31: 465 {

2.6.31: 466 if (!test_and_set_bit(TASKLETkSTATE_SCHED, Et->state))
2.6.31: 467 __tasklet schedule(t);

2.6.31: 468 }

230

CHAPTER 20. INTERRUPT HANDLING AND DEFERRABLE FUNCTTONS

which makes sure the tasklet is not already scheduleq, by checking the s}tai;e ﬁ;li lolis tﬂg
tasklet_struct. Note that failure brings a quiet dropping of the tasklet as the functio
return value.

A trivial example:

#include <linux/module.h>
#include <linux/sched h>
#include <linux/interrupt.h>
#include <linux/siab.b>
#include <linux/init.h>

static void t_fun (unsigned long %_arg);

static struct simp g

{

int i;
int j;

1 t_data;

static DECLARF_TASKLET (t_name, t_fun, (unsigned long)gt_data);

static int __init my_init {(void}

i

}

printk (KEBN_INFD "\nHello: init_module 1loaded at address Ox¥p\n",
init_module};

t_data.i = 100;

;;iz::-%KERzﬁgﬁFO * gcheduling my tasklet, jiffies= %ld \n", jiffies);

tasklet_schedule (&t_name);

return 0;

static void _ exit my_exit (void)

{

}

printk (KERN_INF("\nHello: cleanup_module loaded at address Oxjp\n”",
¢leanup_module) ;

static void t_fun (unsigned long t_arg)

{

}

struct simp *datum;
datum = {struct simp *)%t_arg;

. o ‘s 5 = 1
printk (KERN_INFO "Entering t_fum, datum->1i = %d, jiffies = %ld\n",
datum—>i, jiffies); o .)
printk (XERN_INFO "Entering %_fun, datum->j = %d, jiffies = }ld\n",

datumn—>j, jiffies);

wodule_init (my_ini%);
module_exit (my_exit};

204 WORK QUEUES 231

Kernet Kernel
Version Version
Note Nota

® There is an ongoing discussion about eliminating tasklots from the Linux kernel.

o First, because tasklets run in software interrupt mode, you cannot sleep, refer o user-
space, ¢bc., so one has (o be quite careful.

» Second, since tasklets run as software interrupts they have higher priority than any other

task on the system, and thus can produce uncontrolled latencies in obher tasks if they
are coded poorly.

¢ The idea is to replace almost alf tasklet uses with workqueues, which run in a sleepable
pseardlo-user context, and get scheduled like other tasks. A proof of concept implemen-

tation in which all tasklets were converted to work queues with a wrapper did not cause
terrible problems.

e Ilowever, there were developers who were very unhappy with the proposed changes, in

particular those who work on network device drivers. In this case testing becomes very
laborious.

e If history is any guide the most likely outcome is that the nse of tasklets will gradually
diminish in that they will be deprecated in new code, and some or a lot of old code will
be converted one instance at a time rather than globally. T(tasklet nse becomes rare it

may be eliminated at some point in one fell swoop, but don’t lose any sleep waiting for
it to happen.

20.4 Work Queues

A work queue contains a linked list of tasks which need to be run at a deferred time (usually as
soon as possible).

The tasks are run in process context; a kernel thread is run on each CPU in order to launch them.
Thus not only is sleeping legal, it will not interfere with tasks running in any other queue. Note that
you still can’t transfer data to and from user-space as there isn’t a real user context to access.

Unlike tasklets, a task run on a work quene may be run on a different, processor than the process that
scheduled it. Thus they are a good choice when such serialization (and hoping to minimize cache
thrashing) is not required, and can lead to faster accomplishment of the deferred tasks.

"The code for work queues can be found in /usr/src/linux/include /linux /workqueue.h and

Jusr /sre/linux /kernel /workqueue.c. The important data structure describing the tasks put
on the queune is:

232 CHAPTER 20. INTERRUPT HANDLING AND DEFERRABLE FPUNCTIONS

typedef void (*work_fumc_t)(struct work_struct *work) ;

struct work_struct {
atomic_long t data;
struct list_head entxy;
work_func_t func;

¥

Here func() points to the function that will be run when the work is done. The other arguments are
for internal use and are usually not set directly.

Note that the data entry is used like the state entry for tasklets; if multiple identical work queues
are requested, all but the first will be quietly dropped on the floor in the same way.

The earliest implementation of workqueues had an explicit data pointer that was passed to the
function. This was modified so that the [unction now receives a pointer to a work_struct data
structure.

In order to pass data to a function, one needs to embed the work_struct in a user-defined data
structure and then to pointer arithmetic in order to recover it. An example would be:

static struct my_dat

{
int irqg;
struct work_struct work;
¥
static void w_fun (struct work_struct *w_arg)
{
struct my_dat *data = container_of (w_arg, struct my_dat, work) ;
atomic_ine (&bhs[data->irql);
¥

A work_struct can be declared and initialized at compile time with:
DECLARE_WORK (name, void (*functiom)(void #*));

where name is the name of the structure which points to queucing up funct ion{) torun. A previously
initialized work queue can be initialized and loaded with the two macros:

INIT_WORK{ struct work_struct #work, void (#function) (void *));
PREPARE_WORK {struct work_struct *work, void (kfunction) (void *)};

where work has already been declared as a work_struct. The INTT_WORK(} macro initializes the
1ist_head linked-list pointer, and PREPARE_WORK() sets the function pointer. The INIT_WORK macro
needs to be called at least once, and in turn calls PREPARE_WORK(}; it should not be called while a

tagk is already in the work queue.

While it is possible to set up your own work queue for just your own tasks, in most cases a default
work queue (named events) will suflice, and is easier Lo use. L'asks are added to and flushed from
this queue with the functions:

20.4. WORK QUEUES
233

int schedule_work (struct work_struct *wyork) ;
void flush_schednled_work (void);

flush_scheduled work() is used when one needs o wait until all eniries in a work queue have run
t

Note that these are the only work queue functions that are exported to ali modules; the others
)

are exported only to GPL-compliant modules. Thus i
f 0 reat ing il i
orvad ouly oy GPT. fecorapliant creating your own work queue and using it is

A work queue can be created and destroyed with:

struct workquene_struct #create_workqueue (const char *name);
void destroy workqueue (struct workqueue_struct *wg); ’

vs;heretname is up to 10 chara,c‘ters long and is the command listed for the thread, and the
struct workqueue_struct describes the work queue itself (which one never needs to loéak inside)
Note that destroy_workqueue () flushes the gueue before it returns. ’

Adding a task to the work queue, and flushing it is done with:

int queue_work (struct workquene_struct *wq, struct work struct swork):
void flush workqueue (struct workqueue_struct *wq); ,

It is possible Lo postpone workqueue execution for a specified timer interval using:

étruct delayed_work { struct work_struct_work, struct timer list timer;}
?nt schedule_delayed work (struct delayed work *work, unsigned long deia ¥
int cancel_ delayed_work (struct delayed work *work); .

DECLARE_WORK(name, void (*function) (void *));

INIT _WORK(struct delayed_work #work, woid (*#function) {void *));

PREPARE_WORK (struct delayed work #work, void (#function) {void *))i
3

Wh re de:l‘a' is exp[‘CSSed in i iff ieS Oﬂ can u y e
€] Y . e G 5S¢ cance de ed WO, 1 1
.].._ la —_ rk () tO k111 OH a p ;nd]ﬂg

One has to be careful when takin ik
g advantage of a task’s ability (o sleep on a k ; i
sleeps, no other pending task on the queue can run until it wakes up! b workduenes when 1t

Th . e . .
e workquene implementation also provides a method of ensuring a function runs in process context:

typedef void (#work_func_t) (struct work_struct *work):
struct execute_work { ’
struct work_struct work;

I
int execute_in process_context (work_func_t fn, struct execute_work *ew);
— ¥

If this function is called from process context it will return a value of 0 and fn{data) will be run

immedia,tel y - i f thiS fﬂIlCtiOn iS ('a;]l d fl‘OIn iIlt T H] y i W i vV e
- o £ eIl { ontext 1t ot P, A
.0 ; J . COon 6T }]_]. reyurn a alUO Of 1 a.nd Lh

schedule_work (kew_work) ;

234 CHAPTER 20. INTERRUPT HANDLING AND DEFERRABLE FUNCTIONS

20.5 Creating Kernel Threads

kernel threads of execution differ in many important ways from those that operate on behalf of a
process. For one thing they always operate in kernel mode.

The functions and macros for creating and stopping kernel threads are given in /usr/src/linux
/include/linux/kthread.h:

#include <linux/kthread.h>

struct task_struct ¥kthread_run {(int (*threadfn) (void #*data) void xdata,

const char namefmt[}, ...);
struct task_struct *kthread_create (imt (*#threadfn) (void *data) veoid *data,
const char namefmtf], ...):

void kthread bind (struct task_struct #k, unsigned int cpu);
int kthread_stop (struct task_struct *k) ;
int kthread_should stop (void};

The created thread will run threadfn(data), which will use namefmt and any succeeding argumenls
to create its name as it will appear with the ps command.

"T'he function kthread_create() initializes the process in a slecping state; usually one will want to
use the kthread_run{) macro which follows this with a call to wake_up_pr?cess(). However, one
may want to call kthread_bind() first, which will bind the thread to a particular cpu.

Terminating the thread is done with kthread_stop(). This sets kthread_should_stop(), wakes
the thread and waits for it to exit. For cxample one might execute a loop such as:

do {} while {!kthread_should stop())};

where the loop will probably include sleeping, and then issue a call to kthread_stop{) from an cxit
routine.

Kernel threads can only be created from process conbext as their implementation can block while
waiting for resources. Calling from atomic context will lead to a kernel crash.

e An older funclion
int kernel thread{(int (%fn)(void %), void * arg, unsigned long flags) ;

is still used in many places in the kernel. It is more complicated to use and requires
more work o accomplish successful termination. It should not be used in new code.

20.6. THREADED INTERRUPT [IANDLERS 236

20.6 Threaded Interrupt Handlers

"The 2.6.30 kernel introduced a new method of writing interrupt handlers in which the bottom half is
taken care by a scheduled thread. This feature arose in the realtime kernel tree and unsurprisingly
has as its goal reducing latencies and the amount of time interrupts may need to be disabled.

The API is only slightly different than that used in the normal interrupt handler; an TRQ is now
requested with the function:

int request _threaded_irq {(unsigned int irq, irq_handler_t handler,
irq_handler_t thread_fn, unsigned long flags, const char sname, void #*dev);

the new aspect being the third argument, thread_fn which is essentially a bottom half. There is a

also a new return value for the top half, IRQ_WAKE_THREAD, that should be used when the threaded
bottom half is being used.

Thus the top half is called in a hard interrupt context, and and must first check whether the interrapt;
originated in its device. If not it returns IRQ_NONE; otherwise it returns TRQ_HANDLED if no further

processing is required, or TRQ_WAKE_THREAD if the thread function needs to be invoked. Tn this case
it should have disabled the interrupt on the device level,

While this method has not yet percolated into interrupt handlers, eventually it might replace tasklets

and work queues in most arenas. One can expect to see a gradual adoption of this method, especially
in new drivers.

20.7 Labs

Lab 1: Deferred Functions

Write a driver that schedules a deferved function whenever a write () to the device takes place.

Pass some data to the driver and have it pring out.

Have it print out the current->pid ficld when the tasklet is scheduled, and then again when the
queued function is executed.

{mplement this using:

¢ tasklets

s work gueues

You can use the same testing programs you used in the sleep exercises.

Try scheduling multiple deferred functions and see if they come out in LIFO or FIFO order. What
happens if you try to schedule the deferred function more than once?

236 CHAPTER 20. INTERRUPT HANDLING AND DEFERRABLE FUNCTIONS

Lab 2: Shared Interrupts and Bottom Halves
Write a module that shares its TR with your network card. You can generate some network interrupts
cither by browsing or pinging.
Make it. use a top hall and a bottom half.
Check /proc/interrupts while il is loaded.
Have the module keep track of {he number of times the interrupt’s halves are called.

Implement the bottom hall using:

e tasklets,
¢ work queues

o A backgroimd thread which you launch during the module’s initialization, which gets woken
up anytime data is available. Make sure you kill the thread when you unload the module, or it
may stay in a zombie state forever. .

For any method you use does, are the bottom and top halves called an equal number of times? If not
why, and what can you do about it?

Lab 3: Producer/Consumer

You may have noticed that you lost some hottom halves. This will happen when more than one
interrupt arrives before bottom halves are accomplished. For instance, the same tasklet can only be
queued up twice. :

Write a bottom hall that can “catch up”b; Le., consume more than one event when it is called,
cleaning up the pending queue. Do this for at least one of the previous solutions.

Lab 4: Sharing All Interrupts, Bottom Halves

Extend the solution to share all possible interrupts, and evaluate the consumer/producer problem.

Lab 5: Sharing All Interrupts, Bottom Halves, Producer/Consumer Prob-
lem

Tind solutions for the producer/consumer problem for the previous lab.

Lab 6: Threaded Interrupt Handlers
If you are running a kernel version 9.6.30 or later, solve the producer /consuruer problem. with a
threaded interrupt handler.

‘['here are two types of solutions presented, one for just one shared interrupt, one sharing them all,
with the same delay parameter as used in the earlier oxercises.

20.7. LABS
237

Lab 7: Executing in Process Context
Write a brief module that uses e i
Wil [module that xecute_in_process_context (). It shoul i 5t
context (during initialization would be sufficient} and then in an interrup:;1 ifglims st process

You can adapt the simplest shared interrupt lab module to do this

Ma,k() sure you pl‘iﬂt Oul ihe Ietul‘ V -II order t e WI](}! | £ I T
i alue I itJ i i i y
° . d O Se heI‘ 1 US‘J rarn Lh fllnCtIOIl dl ectl 3 O

238

CHAPTER 20. INTERRUPT HANDLING AND DEFERRABLE FUN CTIONS

- Chapter 21

Hardware I/0

We'll see how Linux communicates with data buges and I/O Ports,

uses memory barrier, how device drivers register and unregister them, read and write to them, and
slow them down. We'll see how to read and write to memory mapped devices. We'll also briefly

consider how to access /O Ports from user-space.

21,1 Busesand Ports e e e e e e e e e 240
21.2 Memory Barriers e e e e e e e e e 240
21.3 Registering I/O Ports 241
21.4 Resource Management00 242
21.5 Reading and Writing Data from 1/0 Registers 244
21.6 Slowing I/O Calls to the Hardware 245
21.7 Allocating and Mapping I/0 Memory e e e e 246
21.8 Accessing I/O Memoryt 247
21.9 Access by User - ioperm(), iopl(), /dev/port 249
21.10Labs e e e e e e, 249

239

240 CHAPTER 21. HARDWARE 1/O

21.1 Buses and Ports

Computers require data paths lor the flow of information between the processor, memory, and the
various 1/0 devices and other peripherals. These data paths are known as the bus, of which there

are several kinds:

e A data bus is a group of lines that do parallel data transfer; on the Pentium data buses are
64-bil wide.
o An address bus transmits addresscs; on the Pentium address buses are 32-bit wide.

e A control bus transmils control information, such as whether the bus can allow data to go
between a CPU and RAM, or between a CPU and an I /O device, or whether a read or write is

to be performed.

A bus connecting a CPU to an 1/O device is called an 1/0 bus; x86 CPUs use 16 of 32 address
lines to address I/O devices, and 8, 16, or 32 out of the 64 data lines to transfer data. The I/O
bus is connected to each T/O device through a combination of /O ports, interfaces, and device

controllers.
"I'he buses can be of various types such as ISA, EISA, PCI and MCA. We'll restrict our attention
to ISA and PCIL.

Controlling peripheral devices gencrally involves reading and writing to registers on the device.
When we talk about I/O ports, we are referring to the consecutive addresses, or registers.

Exactly bow these ports are accessed depends on the CPU. All are attached to some kind of peripheral
bus, but some CPUs, such as the x86 actually have distinct read and write lines and special CPU
instructions to access these memory locations. On other architectures, memory is memory. Portable
code uses the same basic functions regardless of the architecture, although the implementation of the

functions may differ.
On the x86 architecture this I/0 address space is 64K in length; ports can be addressed as individual
8-bit ports, while any two consccutive 8-bit ports can be treated as a 16-bit port, and four consecutive

8-bit. porls can be treated as a 32-bit port. Thus, to be more precise, you can have 64K 8-bit ports,
or 32K 16-bit ports, 16K 32-bit ports, or some other combination. The 16-bit and 32-bit ports should

be aligned on 16-bit and 32-bit boundaries.

21.2 Memory Barriers

Operations on I/O registers differ in some important ways from normal memory access. In particular,
there may be so-called side-effects. These are generally due to compiler and hardware optimizations.

These optimizations can canse rcordering of instructions. In conventional memory reads and writes
there is no problem; a write always stores a value and a read always returns the last value written.

However, for 1/0 ports problers can result because the CPU cannot tell when a process depends on
the order of memory access. In other words, becanse of reading or writing an I/0 register, devices

may initiate or respond to various actions.

Therefore, a driver must make sure no caching is performed and no reordering occurs. Otherwise
problems which are difficult to diagnose, and are rare or intermittent, may resull.

21.3. REGISTERING I/0O PORTS
241

"The solution is i i
n is to use appropriate memory barrier functions when necessary. The necessary func-

tions are delfined in and indirect]y i .
and are: ndirectly included from /usr/src/linux/ar ch/x86/include/asm /system.h

void barrier {(void}

void rmb {(void}
void wmb (void)
void mb (void)

void smp_rmb (void)
void smp_wmb (void)
void smp_md (void)

The barrier () macro causes the compiler to store in memory all values currently modified in a CPU

register, to read them again later when they : Thig :
the hardware itself. y are needed. This function does not have any effect on

t’I};l;e I;:;;}:Fsrﬁacroz gut; hardware memory barriers in the code; how they are implemented depends on
3 . rm orces any reads before the barrier to complet, ! ‘ k
bla | ' -omplete before any reads 3

barrier; wmb() does the same thing for writes, while mb() does it for both read{s a(jr?d QWS;EZ wter the

The versions with smp_ insert hard i
_ f ware barriers only on muli- ; i
systems they expand to a simple call to barrier(). y processor systems; on siugle CPU

A simple example of a nse of a write barrier would be:

io32write (direction, dev->base + OFF_DIR);
io32write (size, dev->base + (FF_SIZE);
wmb () ;

io32write (value, dev->base + OFF_GO);

Maost architectures define convenienc i
: “e macros, which combi ing ith i :
barrier. In the simplest form they ook fike:) ne setting a value with invoking a memory

#def:?.ne set_mb(var, value) do { var = value; mb{); } while (0)
#def:f.ne set_wmb(var, value) do { var = value; wmb{); } while (0)
#define set_rmb(var, value} do { var = value; rmb(); } while (0)

I

tMﬁgmoryﬂli)arfriers mag(; ((:ia.use a performance hit and should be used with care. One should only use
specific form needed. Ior instance on x86 the write me i , ;

‘ ; mory barrier does nothing as wri

not reordered. However, reads may be reordered, so you should not use mb(} if wmb()gwm:ltlm;:s;ﬁize

21.3 Registering I/0 Ports

I}e!(l]e we Can aCCess ihe I/O elr 8¢ ou “ re 15 not h]!l
pOI tS, tlle lfernel haS tO Ieglstel th AT HIF
.)‘ g e g

Linux uses the following functions, defined i i .
o relossiog L/ o , ned in /usr/src/linux/kernel/resource.c for requesting

242 CHAPTER 21. HARDWARE 1/0

#include <linux/iopors.h>

struct resource *request_region (unsigned long from, unsigned long extent, const char *pame) ;
void release_xegion {unsigned long from, unsigned long extent});

In these functions the argument from is the base address of the I/O region, the argument extent is the
pumber of ports, or addresses, and the argument name is Lhe name that will appear in /proc/ioports
as having claimed the region.

These functions are usually called when initializing or unloading a device. request _region() will
rescrve (register) the region, while release_region() will free (unregister) it. If any part of the
range of I/O ports has already been reserved, the request will fail.

Note: there is no enforcement here; ie., if you try to access a given I/0O port withont checking or
requesting it, nothing will stop you.

Example:
#include <linux/icport.h>

static int my_dev_detect(unsigned long port_addr,
unsigned long extent)

{
if{ 'request_region(port_addr, extent, "my_dev")
return -EBUSY ; /* the port is busy */
if{ mydrv_probe(port_addr,extent) != 0) A
release_region{port_addr, extent);
return —ENODEY /* can’t find the device */
T
Teturn 0 ;
T

21.4 Resource Management

You may have noticed that the request_region() function returns a pointer to a structure of {ype:

struct resource {
const char *name;
unsigned long start, end;
unsigned long flags;
struct resource *parent, *sibling, *child;

}
which represents a layer of absiraction: a resource is a portion of some entity that can be exclusively
assigned to a device driver. In this case the resource is the range of I/O ports.

Tn this structure, the name element describes the resource’s owner, the start and end elcments
give the range of the resource (their precise meanings depending on what the resource ig), the flags

21.4. RESOURCE MANAGEMENT 24
3

E}llem:nt cgn b'e used to describe various attributes, and the parent, sibling and child fields place
e structure in a resource tree which contains all resources of the same kind g

Thus all resources referring to 1/0O Port i
S > 8 are in the tree stemming from the i +
node. Management of the T/O ports can be done through the functions: oportresource head

#include <linux/ioport.h>

int request_resource {(struct resource #rcot, struct resource *new) ;
int release_resource (struct resocurce *new); ,

instead of through the *_region() functi descri i i i
e o hioneh the * lons described previously, which are just wrappers for the

Example:

#include <linux/ioport.h>
static struct resource my _resource = { "my_dev",};
— E] r

static int my dev_detect(unsigned long port_addr,

. unsigned long extent)}
unsigned long end = port_addr + extent;
my_resource.start port_addr;
my_resource.end end;

I

if(!request_resource (&ioport_resource, fmy_resource))
return —FBUSY; /* the port is busy %/

if (mydrv_probe(port_addr,extent) != 0) {
releage_resource (§my_resource) ;

, return -ENODEV /% can’t find the device */

return 0 ;

CHAPIER 21. HARDWARE 1/0 21.6. SLOWING I/O CALLS 'O 'I'HE IIARDWARE

244
245
Reading and writing 1/0 ports m : .
discussod. p y require the use ol memory barriers, which we previously
e For specific buses there are oplional convenience funclions that take care of allocating
1/O vesources and remapping them. For instance for PCT one can use the following Ex le:
functions (and others) defined in / usr/src/linux/drivers/pci/pei.c: ampie:
int pci_request_region (struct pei.dev *pdev, int bar, const char *res_name); outb (MSE_READ_X_LOW, MSE_CONTROL PORT);
int pci_request_regions (struct pci_dev *pdev, const char *res_name);
int pci_release regions (struct pci_dev *pdev) ; dx = {inb(MSE_DATA_PORT) & Oxf);
void pci_release_region (struct pci_dev #pdev, int bar);
o You can request either a particular bar (Base Address Register) associated with the 21.6 .
device, where bar can range from 0 to 5, or all regions associated with a device. ' SIOWIHg I/ O Calls to the Hardware
o The res_name argument is what shows up under /proc/iomem. Pausing lunctions can be used to handle T/O to slow devices. They have th [P
S r . -VICES. ey have the same form as th
B ﬁza; rezzidg'rg,e‘ functions, bu‘f with the _p appended to their names; iLe., inb_p(), outw_p() Etce
re defined in /usr/sre/linux/arch/x86/include/asm /io.h through some very Co_mpli,cateé

macro magic.

These functions insert a small delay after the 1/0O instruction if another such function follows. T

should not be necessary except for very old ISA hardware. ey

21.5 Reading and Writing Data from I/O Registers

While there is no precise documentation on the length of the introduced delay, a heuristic test can
lay, S %

The following macros are defined in asm/io.h, and give the abilily to read and write 8bit, 16-bii, : :
be applied with the following calibration program:

and 32-bit ports, once or multiple times:

/% IOPORT FROM 0x200 to 0x240 is fr

. _ ee on my system (64

Reading: #define IOSTART 0x200 y system (64 bytes) +/
#define IOEXITEND 0x40

unsigned char inb (unsigned long port_address);

unsigned short inw (unsigned long port_address) ;

unsigned long inl (unsigned long port_address) ;

#include <linux/module.h>
#include <limux/ioport.h>
#include <linux/jiffies.h>

void insb (unsigned long port_address, void *addr, unsigned long count); "
void insw (unsigned long port_address, void *addr, unsigned long count) ; #}301Ude <linux/io.h> -
void insl (umsigned long port_address, void xaddr, unsigned long count); #include <linux/init.h>
:g:?ne grfggp 1006000 /% should be a multiple of millions %/
. e i ;i
ertlng: ne 1060000000 /* make the time in manoseconds) #/

static i ini ind :
void outd {umsigned char b, unsigned long port_address); { atic int __init my_init (void)
void outw (unsigned short w, unsigned long port_address);

void outl (unsigned long 1, umnsigned long port_address);

void outsb (unsigned port_address, void #addr, unsigned lomg count);
void outsw (unsigned port_address, void *addr, unsigned long count);
void outsl (unsigned port_address, void *addr, unsigned long count);

int j;
unsigned long ultest = (unsigned long)1000;
unsigned long jifa, jifb, jife, jifd;

if (!request_region (IDSTART, IOEXTEND, "my_ioport")) {
printk (KERN_INFO "the I0 REGION is busy, quitting\n"};
Note that the long functions give only 32-bit operations; there is no 64-bit data path even on 64-bit .

platforms.

}

printk (KERN_INFO * requesting the IO region from Ox¥%x to Oxdx\n"

The functions above that take the count argument do not write to a range of addresses; they write TOSTART, IOSTART + IOEXTEND):

only to the one port address, but they loop efficiently around the operation.
/* get output delays */

All these functions do 1/O in little-endian order, and do any necessary byle-swapping.
jifa = jiffies;

CHAPTER 21. HARDWARE I/0
246

for (j = 0; j < NLOOP; j++)
outl (ultest, IDSTART);
jifb = jiffies;
yifc = jiffies;
for (j = 0; j < NLOCP; j++)
outl_p {(nltest, TOSTART) ;
jifa = jiffies;
i RN_INFO
ek (Tiuti: nsec/op=%ld outl_p: nsec/op=41ld
(jifb - jifa) * (BILL ; NLEgz; ; gi,
ji - jifc) * (BILL / NL »
Ej(;i:d —J§if)c) - (jifb - jifa)) * (BILL / NLOOF} / HZ);

nsec delay/op=4ld\n",

/* get input delays */

jifa = jiffies;
for (j = 0; j < NLOOP; j++)
ultest = inl (I0START);
jifb = jiffies;
jifc jiffies;
for {j = 0; j < NLOOP; j++)
altest = inl_p (IO0START);
jifd = jiffies;
pramek (§E§§1¥N§290/0p=%1d inl_p: nsec/op=%ld nsec delay/op=#ld\n",
(3ifb - jifa) * (BILL ; Niggig ; ﬁi,
i3 - ji * {BILL N)
E%;f.:d —J:_]Lf.;z:) —((jifb - jifa)) # (BILL / NLOOP) / HZ);

return 0;
} .
static void __exit my_exit (void)
' printk (KERN_INFO ® releasing the 10 region from Oxix to ox¥x\n",
IDSTART, IOSTART + IOEXTEND) ;
release_region (IDSTART, IDEXTEND} ;
}

medule_init (my_init);
module_exit (my_exit};
MODULE_LICENSE ("GPL v2"};

Running this on a variety ol different CPU’s pives extra delay of about a microsecond per operation.
UMY

21.7 Allocating and Mapping 1/O Memory

- N -7- d
i i ; d though on-board memory which is remappe
_trivial peripheral devices are almost always accesse : /v noppod
1.';«:,11(1)(];l r?:f:(rilj a?milzlx)ble to the processor over the hus. These memory locations can be used as buffers,

behave as I/O ports which have side effects associated with 1/O operations.

i i itect Linux
Exactly how these memory regions are accessed is quite archlte.cture—depend.ent. Howevr{;;,it o
hi)zlac 1]);1 platform dependence by using a universal interface. While some architectures pe
es the . I ‘ o
dereferencing of pointers for these regions, one should never altempt this.

21.8. ACCESSING 1/0O MEMORY 247

There are three essential steps in using thesc regions: allocation, remapping, and use of the appro-
priate read /write functions.

Before such a memory region can be used it must be allocated (and eventually freed) with:

struct resource *request_mem_region {(unsigned long start, unsigned long len, char *name);
void release_mem_region (unsigned long start, unsigned long len);

which work on a region of 1en byles, extending from address start, and using name to describe the en-
try created in /proc/iomem. The starting address is a characteristic of the device; e.g., for PCI de-
vices it may be read from a configuration register, or obtained from the [unction p¢i_resource_start ().

One can pot directly use the poinber to the start address; instead one must remap and eventually
unmap it with:

#include <linux/io.h>

void *ioremap (unsigned long phys_addr, unsigned long size);
void iounmap (void *addr);

Furthermore, one should refer to this memory only with the functions to be described next, not direct
peinter dereferencing.

Occasionally, one may find it convenient to use the following Functions to associate /O registers, or
ports, with /O memory:

#include <asm-generic/iomap.h>

void *ioport _map (unsigned long port, umsigned int count):
void ioport_ummap (void *addr);

By using these functions 1/O ports appear as memory. These ports will have to be reserved as usual

before this is done. After doing this, access is obtained with the read /write functions to be discussed
next.

Once again there are bus-specific optional convenience functions, such ag

void #pci_iomap (struct pei_dev *dev, int bar, unsigned long maxlen);
veid pci_iounmap (struct pci_dev *dev, void __iomem #* addr) ;

defined in /usr/src/linux/lib/iomap.c.

Note these functions do not request the memory regions; that must be done separately.

21.8 Accessing I/0 Memory

Reading and writing from remapped 1/0O memory is done with the following functions:

#include <linux/io.h>

CHAPTER 21. HARDWARE I/0
248

ungigned int ioreadd (void *addr);
vnsigned int joreadif (void *addr);
unsigned int joread32 (void *addr};

void iowrite8 (u8 wval, void #addr) ;
void iowritel6 (ul6é val, void *addr) ;
void iowrite32 (u32 wval, void *addr) ;

i P . p l e 3
" he ad.dI 11111€] SNo (l tal d Wi 11 101Tema] w1 h er g I G ECEB{;
W it]l tlle](53.-(] f”ﬂctlo]ls Iei ur Il}Ilg !;lle Vall]e Icali.

Reading and writing multiple times can be done with

. £
void ioread8_rep (void *addr, void *buf, uns%gned 1ong Zzzzt;i
void ioreadif_rep (void #addr, void #buf, uns%gned ong Count):
void ioread3?_rep (void *eddr, void *buf, unsigned long ;

. ; ount) ;
void iowriteS_rep (void *addr, void *puf , uns:.Lgnec;]1Long zount)"
void jowritel6_rep (void *addr, void *puf, uns}gned 1ong count):
void iowrited2 rep (void *addr, void *buf, unsigned long ;

i t L+] aqdresses, e n ertln to Lhe
heS 13 f]]rl(;t]()ns d() re[)ea-ted I/O on addr, no tO a ra-ng Oi d CSSCS 3 ad g from or g
keI‘Ilel a.ddl'eSS pOlIlted to by buf.

Most 64-bit architectures also have 64-bit reads and writes, with the functions:

164 Teadg (address);
void writeq (u64 val, address) ;

t i 64(), iowrite64()
sed in an obvious way, where the g stands for quad. Note there are no ioread64 ()
u
functions at this time.

Working directly with a block of memory can be done with

. . £y
void memset_io (void #addr, ud val, unsigned 1nF cozéii; -

oid memcpy_to (void *dest, void ¥source, unsigned 1 N Count)z
M - Py - :
void memcpy_toio {void *dest, void *source, unsigned in

£ g ing., except for
The above functions do I/O in little-endian order, and do any necessary !?it&swappmg D
theemem _O ones which simply work with byte streams and do no swapping.

The older /O functions:

unsigned char readb (address};
unsigned short readw (address);
unsigned long veadl (address);

void writeb (unsigned char val, address);
void writew (unsigned short val, address):
void writel (unsigned long val, address);

; as safe ¢ - functions as they do
are deprecated, although they will still work. They are not as safe as the newer func

not do as thorough type checking.

21.9. ACCESS BY USER - IOPERMY(), IOPL(), /DEV/PORT 249

21.9 Access by User - ioperm(), iopl(), / dev/port

1/0 Ports can also be accessed from user-space. This is a technique often nsed by user-space drivers,
such as the various X-servers. Applications doing this must be run as root. Thus they are dangerous
to use for both stability and security.

One method is to use the functions:

#include <sys/io.h>

int ioperm (unsigned long from, unsigned long num, int turn_cn);
int iopl (imt level);

ioperm() gets permission for individual ports, for num bytes from the port address from, enabling if
turn_on = 1.

Only the first 0x3£f ports can be accessed this way; for larger valies you have to use iopl (), which
gets permission for the entire 1/0 spacc.

'The level argument can range from 0 to 3. Ring levels less than or equal to this value will be given

access to the I/O Ports; thus a value level=3 lets normal user applications (in Ring 3) have access
to I/O Ports. -

When using these facilities you can uge inb(), outb() etc., functions from user-space. This requires
compilation with optimization turned on to ensure expansion of inline functions.

Another method is to use the /dev/port device node. One merely seeks to the correct offset and

uses normal read and write functions. This back door is considered quite dangerous but has often
been used in legacy applications.

21.10 Labs

Lab 1: Accessing I/0O Ports From User-Space

Look at /proc/ioports to find a free 1/0 port region. One possibility to use the first parallel port,
usually at 0x378, where you should be able to write a 0 to the register at the base address, and read
the next port for status information,

"Iry reading and writing to thesc ports by using two methods:

e ioperm{)

* /dev/port

Lab 2: Accessing I/0O Ports

Look at /proc/ioports (o find a free 1/0O port region.

Wrile a simple module that checks if the region is available, and requests it.

JHAPTER 21. HARDWARE I/O
250

Check and see if the region is properly registered in /proc /ioports.
Malke sure you release the region when done.

- - - '?
The module should send some data to the region, and read some data from it. Do the values agree?
Tf not, why?

Note: there are two solutions given, one for the older region AP, one for the ncwer resource APL

Lab 3: Remapping I/O Ports

Alber your solution to use ioport_map() and the proper reading and writing functions.

Lab 4: Serial Mouse Driver

Attach a generic serial mouse using the Microsoft protocol to a free serial pors.
Depending on which serial port you have chosen, you'll have to know the rclevant IRQ and base
register address; i.e.,

Table 21.2: Serial mouse nodes and registers

Port Node 1 TRQ TOPORT
coml Jdev/tiyS0 4 0x0318-0x038
com? [dev/ttyS1 3 0x023-0x02(F
com3 Jdev/tlyS2 4 0x03e8-0x03ef
com4 /dev/tty53 3 0x02e8-0x02ef

You will need to view the man page for mouse, which says in part:

Microsoft protocol

The Microsoft protocol uses 1 start bhit, 7 data t.>its, no
parity and one stop bit at the speed of 1200 blts/se;.
Data is sent +to BxD in 3-byte packets. The dx and dy
movements are sent as two’s-complement, 1lb (rb) are set
when the left (right) button is pressed:

byte 46 db d4 a3 d2 di do

1 1 1b rb dy7 dy6 dx7 dxB
2 0 dx5 dx4 dx3 dx2 dxl ax0
3 0 dys dy4 dy3 dy2 dyl dy0

21.10. LABS 051

You will also have to take a good look at /usr/sre/linux/include/linux /serial_reg.h which gives
the various UARL' port assignments (as offsets from the base register) and the symbolic definitions
for the various control registers.

Your driver should contain:

e An interrupt routine which prints out the consecutive number of the interrupt (i.e., keep a
counter), the dx and dy received, and the cumulative x and ¥ positions.

o A read entry thal reports back to user-space the current x and vy positions of the mouse.

e An ioctl entry that can zero out the comulative x and ¥ positions.

You'll have to write a user-space application to inberact with your driver, of course.

"The trickiest part here is initialization of the mouse. You will have to initialize the oulgoing registers

properly to enable interrupts, the FIFPO register, the Line Control Register, and the Modem Control
Register.

The worst part of deoing this is to set the baud rate. You can do this directly in your driver but it is
not easy to figure out. A work around is to run the command {as a script perhaps):

gpm -M -D -t ms -m /dev/ttyS0 -V

and then kill it, which should set things up ok. (On some PC’s this step is unnecessary, either due
to BIOS differences, or to the way Linux has been booted.} Tt is also possible to do this in other
ways, such as using the system command setserial or, depending on how you handle the next step,
merely opening /dev/ttyS? from a user-space application. You can also try

stty -F /dev/ttySO ospeed 1200 ispeed 1200

Il you get hung up on setting the speed, or decoding the bytes, the solutions contain hint files that
contain the code for doing these steps.

While you can do this exercise under X, it will probably cause fewer headaches to do it at a console,
as X has some ideas about how to handle the mouse.

EXTRA: Construct a fully functional serial mouse driver, and use it under X. Note to do this you'll
have to modify /etc/X11/xorg. conf to point to your driver and the protocol. The read entry should
deliver the latest raw 3 byte packet, and pad with zeros for any more than 3 bytes requested. You’ll
have to be careful with things like making sure the packet is not rese while you are reading, etc.

262

CHAPTER 21. HARDWARE /O

Chapter 22

PCI

We'll see how Linux nses PCI devices, and describe the various func-
tions used to find and manipulate them. We'll also consider the newer PCL Express standard.

221 What is PCI?, 253
222 PCIDevice Drivers e e et e e e e e e e 256
22.3 PCI Structures and Functions e e e e e e 258
22.4 Accessing Configuration Space 259
22.5 Accessing 1/0 and Memory Spaces 260
226 PCEExPress vee . 261
22.7 Labs e 261

22.1 What is PCI?

PCI stands for Peripheral Component Interconnect. It replaces ISA (Industry Standard Architecture)
with three main goals:

® Better performance transferring data between CPU and peripherals.

¢ Platform-independent as possible.

IR

254 CHAPTER 22. PCI

s Simplify adding and removing peripherals.

Information on the PCI devices currently installed on the system can be oblained with the command:

$ lspci —v

00:00.0 Host bridge: Intel Corporation 4 Series Chipset DRAM Controller
(rev 02)
Subsystem: ASUSTeK Computer Inc. Unknown device 82d3
Flags: bus master, fast devsel, latency 0
Capabilities: [e0] Vendor Specific Information

00:1a.7 USB Controller: Intel Corporation 82801JI (ICH10 Family) USB2 EHCI
Controller #2 (prog—if 20 [EHCI])
Subsystem: ASUSTeK Computer Inc¢. Unknown device 82d4
Flags: bus master, medium devsel, latency 0, IRQ 18
Memory at fOEffc00 (32-bit, non-prefetchable) [size=1K]
Capabilities: [50] Power Management version 2
Capabilities: [68]1 Debug port
Capabilities: [98] Vendor Specific Information

02:00.0 Ethernet controller: Marvell Technology Group Ltd. 8BE8056 PCI-E

Gigabit Ethernet Controller (rev 12)

Subsystem: ASUSTeK Computer Inc. Unknown device B81f8

Flags: bus master, fast devsel, latency 0, IRQ 29

Memory at £e9fc000 (64-bit, non-prefetchable) [size=16K]l

T/0 ports at c800 [size=266]

Expansion ROM at £e9c000G0 [disabled] [size=128K]

Capabilities: [48] Power Management version 3

Capabilities: [50] Vital Product Data

Capabilities: [5c] Message Signalled Interrupts: 64bit+ Queue=0/0

Enable+
Capebilities: [e0] Express Legacy Endpoint IRQ O
Capabilities: [100] Advanced Error Reporting

01:00.0 VGA compatible controller: nVidia Corporation GeForce 8400 GS
(rev al) (prog-if 00 [VGA controller])

Subsystem: ASUSTeK Computer Inc. Unknown device 8278

Flags: bus master, fast devsel, latency O, IRQ 16

Memory at £4000000 (32-bit, non-prefetchable) [size=16H]

Memory at 40000000 (64-bit, prefetchable) [size=256M]

Memory at £a000000 (64-bit, non-prefetchable) [size=32M]

1I/0 ports at bc00 [size=128]

[virtual] Expansion ROM at £e8e0000 [disabled] [size=128K]

Capabilities: [60] Power Management version 3

Capabilities: [68] Message Signalled Interrupts: 64bit+
Queue=0/0 Enable-

Capabilities: [78] Express Eandpoint IRQ O

Capabilities: [100} Virtual Channel

Capabilities: [128] Power Budgeting

Capabilities: [600] Unknown (11)

22.1. WHAT IS PCI?
2565

;[‘;1(; information r:})fu?ed c;a,bout each device comes from its configuration register, a 256-byt
ess spacc on the board, which is read during boot initializati , fest
hen oy it o a,PCI s xo g boot and PCI bus initialization. Note the first;

Table 22.1: PCI features

bus number: 256 are permitied, but most PC’s have only a few.
device number: Each bus can have up to 32 devices.
function mumber: fiach device can have up to 8 functions.

The PCI Chapter of Corbet, Rubini
y t and Kroah- Hartman book gives iled i i
about the layout of the configuration register and the fields incorporfted irrln ic::re fetallod information

gr?c;ier aﬁmu:l(, }de.tection of PCT devices is done at boot; the configuration registers are located
: read and & 1eir contents are placed in memory in a linked lst of data structures. (We’
hot-swappable devices out of this discussion,) | o (Werve loft

\thfn aBPIgI system boots _devices initially have no memory, 1/0 ports, IRQ’s, elc. assigned. Th
System S finds safe assignments for these resources before a device driver c;m ge;in ac%ess éo thi

resource; they will then be obtainable from th i i
e o men b e configuration register. Any firmware on the deviece is

A view of the devices on the bus can easi i
: 3 S asily be oblained b i " icki
the sixth bus, third device slot, first function: Y looking ot sysfs. For erample, picking

$ 1s -1F /sys/bus/pci/devices/0000:05:02.0

total O

~T¥-r—-r—— 1 root root 4096 May 27 07:15 broken parity_status
lrwxrwxxwx 1 root root ¢ May 27 02:14 bus —> __/,./_ /.. /vusfpci/
-r——r—-r—— 1 root root 4096 May 27 07:15 class T i
~rw-r--r—— 1 root root 256 May 27 07:16 config

“r—r—-r—— 1 root root 4096 May 27 07:15 device

lruzrwzrwx 1 root root 0 May 27 02:14 driver -> \

“rw-—————— 1 root root 4096 May 27 OT{ié/é;igiibus/pC1/drlverS/Skge/
“r—-r—-r—- 1 Toot root 4096 May 27 07:15 irq

“r——r-—r—— 1 roct root 4096 May 27 07:15 local_cpulist

—r—r-—r-- 1 root root 4096 May 27 G7:15 local _cpus

—r-—r--r—— 1 root root 4096 May 27 07:15 modalias

—rw-r—-r-— 1 root root 4096 May 27 07:15 msi_bus

lruxrwxrux 1 root root 0 May 27 07:15 net:etho —>

druxr-xr—x 2 root root 0 May 27 07:15 é;éééj../../C1aSS/n6t/8th0/
—r—-r——r-— 1 root root 4096 May 27 07:15 resource

B 1 root root 16384 May 27 07:15 resourced

—Tw-—————— 1 root root 266 May 27 07:15 resourcel

B 1 root root 131072 May 27 07:15 rom

257

CHAPTER 22. PCI 22.2. PCI DEVICE DRIVERS
256
lrwxrwxrwx 1 root root 0 May 27 07:15 subsystem —> T'able 22.2: pei_driver structqre elements
S fpus/pei/ S e
—p——r—1—— i root Toot 4096 May 27 07:15 subsystem device g
—-y——r—-r—— May 27 07:15 subsystem vendor . ‘ ‘ | .

o 1 IOZ: f:zzz igzg Mg 27 02:14 uevent id_table Points to a table of device ID’s of interest to the driver. Usually this
‘Itz:z“ 1 II?ZOt root 4096 May 27 07:16 vendor will be exported with the macro MODULE_DEVICE_TABLE {pci,...}, and
~§w ——————— 1 root root 32768 May 27 07:15 vpd should be se}‘. to NULL if you want to call the probe () function to check

all PCT devices the system knows about.
ite 4 { SPACeS: t, and configoration,
i .d to read and/or write {0 three address spaces: memory, port, | | |
The ariver o o8 ° / probe Poinis to a probing function which looks for your device.
and we'll discuss each.
renRcve Points to a function that can be called whenever the device is removed,
. . cither by de-registration or by yanking out of a hot-plugeable slot.
22.2 PCI Device Drivers y yanking plugg
suspend Used by power management when a device goes Lo sleep.
One tegisters and unregisters a PCI device driver with:
resume Used by power management when a device wakes up.
#include <linux/pci.h>

int pci_register_driver
void pci_unregister driver (struct pci_driver *};

T'he registration/de-registration functions are normally called in your initialization and cleanup func-

tions.

. . . . rns the
The function pci_register_driver() returns f ‘ !
when registering; even if this is 0, the driver will need to be unregistered. If PCI is not configured,
this function will return 0.

The registration functions use a data structure of type pci_driver:

BN NN
o -

]
o

CNCECECICI VS NN
mE DR DDA D

Important elements of the data structure are:

.31
.31
.31
.31:

.31:

.31

(struct pci_driver *);

which are unnecessary for a particular device can be left as NULL.
number of PCI devices claimed hy the driver

The ID table is an array of structures of pci_device_id which must end with 2 NULL entry:

2.6.31: 17 struct pci_device_id {

.31:

.31:
.31
.31:
.31
.31
.31
.31:
.31

2.6.31: 18 __u32 vendor, device: /* Vendor and device ID or PCI_ANY_IPb%/
2.6.31: 19 _.132 subvendor, subdevice; /* Subsystem ID’s or PCI_ANY_ID .74
.) 2.6.31: 20 __u32 class, class_mask; /# (class,subclass, prog-if) triplet */
473 struct p91f§?1ze; {d de 2,6.31: 21 kernel_ulong_t driver_data; /* Data private to the driver %/
474 struct list_head node; 2.6.31: 22 };
ars char *name;
478 comst struct pci_device_id *id table; /* must be non-NULL for probe to be
called */ . dovice 14 %id): '/* This table is usually filled out with use of the PCI_DEVICE() macro, as in:
. % i_dev *dev, const struct pci.device_l 3
47T int (*probe) (struct pc s - Heu device inserted */
. . i d (NULL if not a static struct pci_device_id tg3_pei_tbi[] = {
. truct pei_dev *dev); /* Device remove
478 void (*remove) {struct p hot-plug capable driver) */ {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE ID_TIGON3_570Q)},
. . Device {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID TIGON3 57000}
; + pei_dev *dev, pm_message_t state); /* ' = —r= - :
479 int (*suspend) (struct p : suspended */ o
N tel}; {PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA AC9100) }
i iate) (struct pci_dev #dev, pm _message_ t statel}; ’ - Y ~ ;
122 ?n: E:szzz;zd;azlyg (struct ici dev *dev) : {PCI_DEVICE(PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE TIGONS3)I,
in T — - N
482 int (*resume) (struct pci_dev *dev); /% Dovice woken up */ } O
483 void (*shutdown) (struct pci_dev *dev); ’
: dlers *err_handler;
zg: :t;zz: gz;;z’:gﬁi e Srivers MODULE_DEVICE_TABLE(pci, tg3_pci_tbl);
486 struct pci_dynids dynids;
487 };

I is important o enable your device after you find it, before you do anything with it, by calling
the function pci_enable_device(). This switches on the I/0O and memory regions, allocates any
missing resources that might be needed, and wakes up the device if was in suspended state. Usually
this function would be called from the probe callback function.

We won’t give a detailed description of the functions pointed to in the above jump table. Functions

CHAPTER 22. PCI 22.4. ACCESSING CONFIGURATION SPACE 050

258

Remember that afier finding the device, before you do anything with it, you need to call the fanction

The kernel contains an excellent mamial on writing PCI device drivers in the file
pci_enable_device (struct pei_dev #dev) in order o enable it.

/usr /sre/linux/Documentation/pei.txt.

Example:

e A PCI device may be of many different kinds, such as a nelwork, character, or block
device. Tn addition to registering as a PCI device, it will also have to register as the

particular kind ol device it is.

To locate and enable one particular device:

e This is normally done in the probe() callback function, where one would call functions #include <linux/pci.h>

such as register_netdev()}, etc.
struct pci_dev *pdev = NULL;

s Likewise, the shutdown() callback function would deregister the device with functions

such as unregister_netdev(). if (!'(pdev = pci_get_device(PCT_VENDGR_ID_INTERC
get_ _ _ID. PCI_DEVI
return -ENGDEV; > FUL-DEVIGEID INTERG 1682, pdev))

pci_enable_device(pdev);

Tf desired, the Function

22.3 PCI Structures and Functions

char #*pci_name(struct pci_dev #pdev)’

The header file /usr/src/linux/include/linux/pcih defines symbolic names for numeric values
used by PCI functions, for register locations and values. The header [ile /Juasr /sre/linux /include

can be called to get i i .
/linux/pei_ids.h has device and vendor specific definitions and is included from pci.h. 0 get the bus, device and function numbers. It doesn’t do this by probing hardware,

bul instead by traversing the known list of present devices.

The basic structure describing a PCI device is of the type pei_dev defined in /usr/src/ linux/include
/linux/pcih. This is a long structure and we don’t need to get into the detalls here.

Ome can also use the macro;

Locating devices can be done with: struct pci_dev *pdev;
for_each_pci_dev{pdewd){ }

#include <linux/peci.h>

to step through all PCI devices.
struct pci_dev *pci_get_device (unsigned int vendor, unsigned int device,
struct pci_dev *from) ;
struct pci_dev #pci_get_device_reverse (unsigned int vendor, unsigned int device,
struct pci_dev ¥from);
struct pci_dev *pci_get_class (unsigned int class, struct pci_dev *from);

22.4 Accessing Configuration Space

The configuration space can be accessed through 8-bit, 16-bit, or 32-bit data transfers

and some other related functions.
?nt pci_read_config_byte {struct peci_dev *dev, u8 where, u8 *val);
%nt pci_read_config _word (struct pci_dev *dev, u8 where, ulé *vali'
?nt pci_read_config dword (struct peci_dev *dev, u8 where, u32 *val):
%nt pci_write_config byte {struct pci_dev *dev, u8 where, u8 *va1)~,
%nt pci_vwrite_config word (struct pci_dev #dev, u8 where, ulf *vali‘
int pei write_config dword (struct pci_dev *dev, u8 where, u32 *val);

The function pei_get_device() requests information about the device. If vendor and/or device is
apecified as PCI_ANY_ID=-1, all devices are matched. Before initializing a chain of devices, the value
of from should be set to NULL. 'These functions are often called in a loop. If from is set to NULL at
the beginning, it will return NULL at the end.

Tf the return value of these functions is not NULL, the data structure describing the device is returned,
and the relerence count for the device is incremented. When the device is released {say on module

unloading) one must call the function: These functions read from or write to val, to or from the configuration space of the device, identified
: S,

by dev. The byte offset from the beginning of the configuration space is given by where.

Note the use of the Lypes u8, u16, u32, us4. These are kernel unsighed data types to be used wh

you must be exactly sure of the length in bits. (There are also signed types, =8, s16 9:32 " gz
which are rarely used.}) You can also use these from user-space as long as y(;u ;eﬁx til "!;1 :
double underscore (e.g., __u32) and include 1inux/types.h. ’ e

void pci_dev_put(struct pci_dev *dev);

$o decrement the refcrence couni; otherwise it can’t be removed from the system if it is hotplug-able.

260 CHAPTER 22. PCI

Multi-byte entries in the configuration registers are in little-endian order, according to the PCI
standard, which is also the convention on x86 platforms. The above data types and functions handle
any byle ordering that needs to be done transparently, when one is on a system like the SPARC,
which is big-endian, so you don’(have to worry about bit order. But you should be aware of it. Byte
ordering is taking care of for word and dword functions. (Note some architecturcs, such as alpha and
IA64 are actually bi-endian and can be configured either way.)

Configuration variables are best accessed using the symbolic names defined in /usr/sre/linux /in-
clude/linux/pei_regs.h, c.g.

pci_read_config byte {dev, PCI_REVISION_ID, krevision};

Tt is also possible to use the setpci utility {o get and set values in the configuration register.

22.5 Accessing I/O and Memory Spaces

As mentioned, one will have to access not only the configtration registers, but also 1/O ports and
memory regions associated with PCI devices. While it ig possible to go hunting for these resources
in the configuration registers, it is easicr to use the generic resource management functions provided

by the kernel.

The relevant functions are:

unsigred long pei_resource_start (struct pci_dev x*dev, int bar);
unsigned long pci_resource_end (struct pci_dev xdev, int bar};

unsigned long pci_resource_len (struct pei_dev *dev, int bar) ;
unsigned long pcl_resource flags (struct pci_dev *dev, int bar);

in which bar stands for Base Address Register.

The first two funchions return the starting and ending address of one of the up to 6 1/O regions that
can be found on the device; the parameter bar thus ranges {rom 0 to 5 and selects which one is

requested.

The last function returns the fags associated with the device, which are defined in
/usr /sre/linux /include/linux/ioport.h.

Here’s an example of usage from /usr/src/linux/drivers/net/8139%00.c:

2.6.31: 738 static __devinit struct net_device * r$18139_init_board (struct pci_dev *pdev)

2.6.31: 739 {

2.6.31: 764 rc¢ = pci_enable_device (pdev);

2.6.31: 765 if (re)

2.6.31: 766 goto err_out;

2.6.31: 767

2.6.31: 768 pio_start = pci_resource_start (pdev, 0);
2.6.31: 769 pio_end = pci_resource_end {pdev, 0);
2.6.31: 770 pio flags = pci_resource_flags (pdev, 0);
2.6.31: 771 pio_len = pci_resource_len (pdev, 0);

22.6. PCI EXPRESS

261
2.6.31: 772
2.6.31: 773 mmio_start = pci_resource_start {pdev, 1};
2.6.31; 774 mmic_end = pci_resource_end (pdev, 1):
2.6.31: 776 mnio_flags = pci_resource_flags (pdev, 1);
2.6.31: 776 mmio_len = pci_resource_len (pdev, 1);

22.6 PCI Express

PCI was introduced in 1991 and despite some enhancements such as PCI-X, it has shown its age

In particular, it’s bandwidth is limited to 133 MB/ ; i
: s. Furkhermore this bandwidth is sh
all the devices on the bus, and competition for it must be negotiated. shored among

In 1997 a separate AGP (Accelerated Graphi ith i
phics Port) was added with its i i
But AGP bas now disappeared in recent motherboards. ovm dedicated bandwidth

PC_I Exp'restcs (usua%ly. donote.d as PCle) was introduced in 2004 and is gradually taking over. Its

:;amtqqa,hty Is tthl.lat;J }J]!; 1sda point-to-point connection; bandwidth is not shared, communicatic‘an i.zs
trect via a switch that direets data flow. Furthermore, hot i ices ig i

o o e irocts » hot plugging devices is far easier, and less

E?,ch device comr_nunicates. through a number of serial lanes each of which is bi-directional and has
a 250 MB/s rate in each direction for a possible 500 MB /s total data transfer rate.

’ll‘he gllmber of lanes depends on the kind of slot; there arc 1, 2, and 16 lane slots available; the x16
slot, for example, can accommodate up to 8000 MB/s and is used by graphic cards. x32 and’ 64 1
cards and slots are also in the standard. ' e

Any PCle card will fit and work correctly in any slot that is as least as large as it is;
b

put an x4 card in an x16 slot, it will just nse fewer lanes. B YOU can

Device drivers written for PCI will still work for PCI ; i
itk disrimtion as vt \ e as the standard was designed to cause as

22.7 Labs

Lab 1: PCI Utilities
"The peiutils package (http://mj.ucw.cz/peiutils.html) contains the following utilities:

s Ispci displays information about PCI buses and connected devices, with many options
¢ setpci can inferrogate and configure properties of PCI devices.
* update-pciids obtains the most recent copy of the PCI ID database and installs it on your

systberrn.

Bun update-pciids to update your database. If it [ails because the URL poinfed to in the script
is down or obsolete try obtaining it directly from http:/ /pci-ids.ucw.cz/. The locationlc;f the

it 2
262 CHAPTER 22. PCI

dowunloaded file (pci . ids) depends on your distribution, but will be somewhere under /usr/share.

(Entering locate pei.ids will tell you.}

Clet more than basic information from Ispci. You can get details frt?m man 1lspci or lspci —help.
For example, to get very verbose information about all Intel devices on your sysi’,em_ you cor.ﬂd
type lspci -vv —d 0x8086:%, or for AMD devices, 1spci -vv —d 0x1022:%. Experiment with

the -x (xx) options to get detailed dumps of the configuration registers.

Use setpci to evaluate or change specific values in the configuration register. For example you could
find out the device identifier for all Intel devices on your system Wlﬂ‘l setpci —vD ~d 0x1022:%
DEVICE_ID, where the ~D option prevents actual changes from happening. Sec the man pages for

examples of changing various confignration register entries.

Lab 2: PCI Devices

Wrile a module that scans your PCI devices, and gathers information about them.

For each found device, read some information from its configuration register. (.Make sure you
read /usr/src/linux/include/linux/pciregs.h and /usr/src/linux/include/linux/peiids.h
to get symbeolic names.) Fields you may wish to obtain could inchide; PCI_VENDOR_ID, PCI_DEVICE_ID,

PCI_REVISION_ID, PCI_INTERRUPT_LINE, PCI_LATENCY_TIMER, PCI_COMMAND.

‘'he information you obtain should agree with that obtained from 1spci.

Chapter 23

Direct Memory Access (DMA)

We'll learn about DMA under Linux. We’ll consider how DMA uses
interrupts for synchronous and asynchronous transfers, how DMA bullers must be allocated, and
virtual to physical (and bus) address translation. Then we’ll look in some detail how DMA is
deployed for the PCI bus, considering both consistent and streaming transfers, and the use of

DMA Pools. We'll examine gather /scatter mappings. Finally we’ll consider DMA for the ISA
bus.

23.1 What is DMA? ..
23.2 DMA and Interrapts« & . 0 i i i i e e e e e e e e e e e e 264
23.3 DMA Memory Constraints

.................. e e e e . . 265
23.4 DMADirectlytoUserttt i, e e e e e, 266
23.5 DMA under PCI o i o it et et e e e e e e e e e 266
23.6 DMAPools e e e e 269
23.7 Scatter/Gather Mappings e e e e e e e e e s 269
23.8 DMA under ISA. e e e e e e e 271
28.9 Labs . & o i it e e e e e e e e e e e e e 272

263

264 CHAPTER 23. DIRECT MEMORY ACCESS (DMA)

23.1 What is DMA?

Direct Memory Access (DMA) permils peripheral devices to transfer data to or from system memory
while bypassing CPU control. Proper use of DMA can lead to dramatic performance enhancement.
Most non-trivial peripherals are likely to have DMA capabilities.

The specifics of DMA iransfers are very hardware-dependent, both in the sense of the CPU involved
(e.g., %86 or Alpha}, and the type of data bus (e.g., PCL ISA, etc.), and to some degree these
degrees of freedom are independent.

Tlowever, since the 2.4 kernel series the goal has been to present a unified, hardware-independent
interface. ‘This was achieved in the 2.6 kernel series, permitting one to deal with more abstract
methods rather than getting deep into the hardware particularities..

On the x86 platform, DMA operates quite differently for ISA and PCI devices. One could say:

o ISA: The hardware is relatively less complex, but the device drivers are more complicated and
have to work hard to manage DMA transfers.

e PCI: The hardware is more complex, but the device drivers are less complicated and have an
eosier time managing DMA transfers.

We'll concentrate on the PCT bus which is more modern and most widespread.

23.2 DMA and Interrupts

The cfficiency of DMA transfers is very dependent on proper interrupt handling. Interrupts may be
raised when the device acquires data, and arc always issued when the data transfer is complete.

Transfers requirc a DM A-suitable buffer, which must be contiguous and lie within an address range
the device can reach, and we will discuss how such buffers can be allocated and released. In the
following we will assume that either: such a buffer exists belore the transfer and is not released but
will be re-used in subsequent transfers; or must be allocated before the transfer begins and released

when it is complete.

"Transfers can be triggered synchronously, or directly, such as when an application requests or pulls
data through a read(}, in which case:

¢ The hardware is told Yo begin sending data

s The calling process is put to sleep.

o The hardware puts dala in the DMA buffer.

e ‘The hardware issucs an interrupt when it is finished.

e The interrupt handler deals with the interrupt, acquires the data, and awakens the process,
which can now read the data.

23.3. DMA MEMORY CONSTRAINTS 265

h 11 app 1010, pusies (O IteS) da & LO h haI‘d S Y rono
‘lv €1 Al il(atio ‘:;]l T WI t ‘ L] ware oneg a:!SO } 3
o 1as a 8§ HCh oS tI'anSfBI‘

Transfers can also be triggered asynchronously when the hardware acquires and pushes data to the
system even when there are no readers al present. In this cage:
® Thfz driver must keep a buffer to warehouse the data until a read() call is issued by an a li-
cation. Y o
o The hardware announces the arrival of data by raising an interrupt,.
e The interrupt handler tells the hardware where to send the data.
s The peripheral device puts the data in the DMA bu(fer.

s The hardware issues an interrupt when it is finished.

The interrupt handler deals with the data, and awakens any waiting processes.

Note that while pushes and pulls have many simi ; ‘
. : y similar steps, the asynchronous transfer i 5
inferrupts per transfer, nol one. ’ y wior fmvolves two

23.3 DMA Memory Constraints

DMA buffers must, occupy contiguous memory; Thus you can’t nse vmalloc (), only kmalloc{) and

g __g P g () lHlCl 101S. Note vou can 5] a;] O 1Se bSi Tal 4. I cafior j i 10
— — i L S C th.e a. -
Ihe at f]‘:ee ages t(ld OCH unc 118

If you specify GFP_DMA as the priority the physi i i
‘ _ he physical memory will not only b il
will also fall under MAX_DMA_ADDRESS=16 MB. ’ /e contignous, on x86 1

For PQI th‘is.sho_uld be unnecessary and wasteful, but there exist PCI devices which still have
addressing limitations (sometimes because they were poorly crafted from an ISA device.) Thus it is
actnally necessary to check what addresses are saitable.

Because the hardwa:r_e is connected to a peripheral bus which uses bus addresses (while both kernel
and user code use Virtual addresses) conversion Functions are needed. These are used when com-

municating with the Memory Management Unit (MMU) or other hardware connected to the CPU’s
address lines:

#include <asm/io.h>

msigned long wirt _to_bus (volatile void *address) ;
void #bus_to_virt (unsigned long address);

unsigned long virt_to_phys (volatile void *address);
void *phys_to_vwirt (unsigned long address);

You can look at the header file to see how these macros are defined.

On the x86 platform bus and physical addresses are the same so these lunctions do the same thing

266 . CHAPTER 23. DIRECT MEMORY ACCESS (DMA)

23.4 DMA Directly to User

High-bandwidth hardware (e.g., a video camera) can obtain lots of speed-up by going stira.lght tz
the user: ie., without using DMA to first gel the data to kernel-space and then transferring
user—épa;c. If’ one wanbs to do this by hand it is tricky; the steps are:

e Lock down the user pages.
e Set up a DMA {ransfer for each page.
o When the DMA is done, unlock the pages.

If these steps seem familiar, it is becanse they are essentially what the get_user_pages(} API does
for you; you'll of course still have to do the DMA transfers properly.

23.5 DMA under PCI

The API used for DMA is platform-independent, and involves a gene}\:ic StI‘llCl;i‘lI'e of type device,
which may 01; may not be PCT in nature. This structure is embedded in tl.le pci_dev siructure, so
to get at it you'll have to also include /usr/ src/linux /include/linux/pei.h.

If one has a device with addressing limitations, the first thing to do is to check whether DMA
transfers to the desired addresses are possible, with:

#include <linux/dma-mapping.h>

int dma_supported (struct device *dev, u64 mask);
For example, if you have a device that can handle only 24-bit addresses, one could do:

struct pci_dev ¥pdev;
if (dma_supported (pdev->dev, Oxffffff)){
pdev->dma_mask = Oxffffff;

¥ else { . N
printk (KERN_WARNING "DMA not supported for the device\n"};

goto device unsupported;

}

' k.
1§ the device supports normal 32-bit operations, one need not call dma_supported () or set the mas

In order to set up a DMA {ransfer one has to make a DMA Mapping, which i'nvolrv?s two s};lepsil
allocat;ing a buffer, and generating an address for it that can be used b).(the devxce_. T'he iita: ;;e
how this is done are architecture dependent, but the functions for allocating and freeing are the s

across platforms:

. ; fp_t flag);
void *dma_alloc_coherent (struct device *dev, size it slze, dma_addr_t *dma_handle, gfp_ 825

i i l handle};
void dma_free_coherent (struct device *dev, size t size, void #*vaddr, dma_addr_t dma_handle}

23.5. DMA UNDER PCI 267

The allocation [unction returns a kerne! virtual address for the buffer, of length size bytes. The
third argument points to the associated address on the bus (which is meant to be used opaquely.)
The flag argument controls how the memory is allocated, and is usually GFP_KERNFL, or GFP_ATOMIC
if sleeping is not allowed such as when in interrupt context. If the mask requires it, GFP_DMA can also

be specified. This memory can be freed with dma_free_coherent () which requires both addresses
as arguments.

Memory regions supplied with dma_alloc_coherent () are used for so-called Coherent DMA Map-

pings, which can also be considered as synchronous or consistent. These have the foll

owing
properties:

e The buffer can be accessed in parallel by both the CPU and the device.

o A write by either the device or the CPU can immediately be read by either, without WOrrying
about cache problems, or flushing. (However, you may still need to use the various memory

barriers fimctions, as the CPU may reorder I/0 instructions to consistent memory just as it
does for normal system memory.)

® The minimum allocation is generally a page. In fact on x86 one actnally always obtains a
number of pages that is a power of 2, so it may be expensive,

Since this method is relatively expensive, it is generally used for DMA buffers that persist through
the life of the device. A good example of its use wounld be for network card DMA ring descriptors.

For single operations, one sets up so-called Streaming DMA mappings, which can also be consid-
ered as asynchronous. These are controlled with

dma_addr_t dma_map_single (struct device *dev, void #ptr, size_t size,
enum dma_data direction direction);
void dma_unmap_single {struct device *dev, dma_addr_t dma_addr, size_t size,
enun dma_data_direction direction); '

A pointer o a previously allocated memory region is passed through the ptr argument; this must be

allocated in DMA-suitable fashion; i.e., contignous and in the right address range. The direction
argument can have the following values:

Table 23.1: DMA transfer direction values

Value Meaning

PCI_DMA TODEVICE Data gaing to the device, e.g., a write.

PCI_DMA_FROMDEVICE Data coming from the device, e.g., a read.

PCI_DMA_BIDIRECTIONAL Data going either way.

PCI DMA_NONE Used for debugging; any attempt to use the IMemory cayses

a crash.
]

268 CHAPTER 23. DIRECT MEMORY ACCESS (DMA)

Streaming DMA mappings might be used for network packets, or filesystem buffers. ‘They have the

following properties:

o The direction of a transfer musi, match the value given during the mapping.

e After a buffer is mapped, it belongs to the device, not the CPU; the driver should not touch

the buffer until it has been unmapped.

o Thus for a write the data should be placed in the buffer before the- mapping; ‘for a rea;i it Ehoul;il
not be touched nntil after the unmapping (which could be done after the device signals, throug

an interrupt, that it is through with the transler.)

A third kind of mapping is a so-called Scatter-gather DMA Mapping. ’t‘his psf;?ts several
buffers, which may be non-contiguous, to be transferred to or from the device at one time.

Tt is also possible to set up a DMA pool, which works pretty much like a memory cache.

consider that next.

we'll

Hermnel Kernsal
Varsion Varsion
Note HNote

o Rather than using a generic interface, the 2.4 kernel used a PC?—speciﬁc inter[fice. The
main functions are in one-to-one correspondence with the generic ones and are:

#include <linux/pci.h>

int pci_dma supported (struct pci_dev *dev, u64 mask);
int pci_set_dma_mask (struct pei_dev *dev, ubd mas%), .
void *pci_allocmconsistent (struct pci_dev *dev, size_t size,

dma_addr_t *dma_handle);

. . . - ar
void pci_free_consistent (struct pci_dev *dev, size_t size, void *vaddr,

dma_addr_t dma_handle); -
dma_addr_t pci_map_single (struct pci_dev *dev, void *ptr, size .t size,
- int direction); - .
ct pci_dev *dev, dma_addr_t dma_addr, size_t size,

void pci_ummap_single (stru
int direction);

e While this older API has not becn removed, it is now just a wrapper around the more
general interface, which should be psed in any new code.

23.6. DMA POOLS 269

23.6 DMA Pools

Suppose you need frequent small DMA transfers. For coherent transfers, dma_alloc_coherent ()
has a minimum sizc of one page. Thus, a good choice would be set up a DMA Pool, which is
essentially a slab cache intended for use m DMA. (ransfers.

The basic functions are:

#include <linux/dmapool.h>

struct dma_pool *dma_pool_create (comst char #name, struct device *dev, size_t size,
size_t align, size t allocation);

void dma_pool_destroy (struct dma_pool %pool);

void #dma_pool_alloc {struct dma_pocl *pool, gfp t wem flags, dma_addr_t #handle);

void dma_pool free (struct dma_pool *pool, void *vaddr, dma addr_t addr);

No actual memory is allocated by dma_pool_create(); it sets up a pool with a name pointed to by
name, to be associated with the device structure pointed to by dev, of size bytes.

The align argument (given in bytes) is the hardware alignment for pool allocations. The final
argument, allocation, if non-zero specifies a memory boundary allocations should not cross. For
example, if allocation=PAGE_SIZE, buffers in the pool will not. cross page boundaries.

The actual allocation of memory is done with dma_pool_alloc{). The mem_flags argument gives
the usual memory allocation flags (GFP_KERNEL, GFP_ATOMIC, ete.) The return value is the kerpel
virtual address of the DMA buffer, which is stored in handle ag 2 bus address.

To avoid memory leaks, buffers should be returned to the pool with dma_pool_free(), and when all
have been released the pool can be wiped out with dma_pool_destroy().

Note that the memory allocated with the nse of the pool will have consistent DMA mappings, which
means both the device and the driver can use it without using cache flushing primitives,

23.7 Scatter/Gather Mappings

It is easiest to do a DMA transfer if you have only one (large or small) contiguous buffer to work
with. Then you can just give a starting address and a length and get the transfer in motion.

However, one often might have several buffers requiring transfer at the same time, and they might

not be physically contiguons. This might occur due to:

e A readv() or writev() system call.
s A disk 1/O request.

o Transfer of a list of pages in a mapped kernel I/0 buffer {such as one might have when using
get_user_pages().) :

Of course one can chain together a series of individual reguests, each one of which represents a

contignous region. But many devices are capable of assisting at the hardware lcvel; a so-called

CHAPTER 23. DIRECT MEMORY ACCESS (DMA)
270

i it wi - f doing it
scatterlist ol pointers and lengths can be given to the device and then it will take care o z

all as one operation. N |
et up an array of structures describing the buffers

In order to accomplih s oL T et s described in fusr/src/linux/arch/x86 /include

requiring transfer. Lor x86 this structure is
/asm/scatterlist.h and looks like:

struct scatterlist {

struct page *page;
unsigned int offset;
dma_addr_t dma_address;
unsigned int length;

}s

er | : ; » length is
The driver sets the page, offset, and length fields for each buffer in the array; Note leng
The driv S 3 s ,
specified in bytes.

"The dma_address field will be filled in by the function:

struct scatterlist *sg,

i ice *dev
int dma_map_sg (struct dev , e s

int nents, enum dma_data_direc

This funection returns the number of buffers to

where nents is the number of buffers in the array. bonteally adjateont b sombiaed.

transfer. "Ihis can be less than nents because any p

Kernel Kernel
Vergion Version
Nple Note

In kernel version 2.6.24, the scatterlist structure was changed to:

struct scatterlist {
unsigned long page._link;
unsigned int offset;
unsigned int length;
dma_addr_t dma_address;
unsigned int dma_length;

};

Filling in the fields is best done with:
igned int len,

void sg_set_page{struct scatterlist *sg, struct page *page, unsign

) unsigned int offset);

. X -) weful
defined in /usr/sre/linux/include/linux /scatterlist.h together with a lot of other usefu

{ i ; : ; res.
convenience fanctions for accessing gather-scatter structure

L~

23.8. DMA UNDER ISA 271

Once this is done it is time to transfer each buffer. Because of architectural differences, one should
nol, refer directly to the elements of the scatterlist data structure, but instead use the macros:

dma_addr_t sg dma_address {struct scatterlist *s8g);
unsigned int sg_dma_len (struct scatterlist *sg);

which return the bus (DMA) address and length of the buffer (which may be different than what
was passed to dma_map_sg() because of buffer coalescence.)

After the full transler has been made, one calls

int dma_unmap_sg (struct device *dev, struct scatterlist *8g, int nents,
enum dma_data direction direction);

where nents is the original value passed to the mapping function, not the coalesced value.

23.8 DMA under ISA

There are two kinds of ISA transfers nsing DMA: nafive transfers using standard motherboard
DMA-controller circuitry, and ISA-busmaster hardware, where the peripheral device controls every-
thing. This latter type is rare and we won’t discuss it, but it ig simifar to PCI transfers.

The DMAGC (8237 DMA Coniroller) maintains information such as the direction and size of the
transler, the memory address, and the status of ongoing transfers. When a DMA request signal
is received by the DMAC, it drives the signal lines so the device can read and write data. These
circuits are now part of the motherboard chipset, rather than separate 8237 chips,

"T'he peripheral device must send a DMA request signal when it is ready for a transfer. It raises an
imterrupt when the transfer is done.

The device driver tells the DMAC the dircction, address and size of the transfer, tells the peripheral
to get ready, and answers the interrupt issned when the transfer completes.

In all but the oldest PC’s, there are two DMACs, and each has four channels, each of which is
associated with a set of DMA registers.

The second {master) controller is connected to the CPU; the first (slave) controller is connected to
channel (0 of the master controller.

Channels 0 through 3 on the slave are 8-bit channels; channel 4 (the first channel on the magter) is
used to cascade the slave controller. Channels 5 through 7 on the master are the 16-bit channels.

‘I'he maximum size of an 8-bit ransfor is 64 KB; for 16-bils it is 128 KB. (Tt is stored as a 16-bit
number.)

DMA usage is requested and freed with the lollowing functions:
#include <asm/dma.h>

int request_dma (unsigned int dmanr, comst char *device_id):
void free_dma (unsigned int dmanr);

72 CHAPTER 23. DIRECT MEMORY ACCESS (DMA)
2 .

where dmanr must be less than MAX_DMA_CHANNELS (ie., 0 through 7), and device_id is the name
which appears in /proc/dma.

An TRQ line is always needed when using a DMA device. The DMA chanuel should be requested
after the TRQ and released before it.

An Example:

/% in initialization %/

request_irq(my_irq, my_interrupt, IRQF_DTSABLED, ’my_dma’, NULL) ;
request_dma(my_dmanr, ‘my_dma’);

/* in cleanup */
free_dma{ my_dmanr };

free_irq{ my_irq, NULL J;

. . R ded
There are a number of other functions used to commumcatfs with the DMAC, il of ?::h‘mh(;-le ((lzgvjece
in a;sm/dma.h and kernel/dma.c. It is hard to give generic exam;_)les for DM as il is very
dependent, but one should look at various kernel drivers for more information.

23.9 Labs

Lab 1: DMA Memory Allocation

ains { 5 handle.
Write a modnle that allocates and maps a suitable DMA buffer, and obtains the bus address bandle

Do this in three ways:

e Using dma_alloc_coherent ().
s Using dma_map_single(}

o Using a DMA Pool.

4 1
You can use NULL for the device and/or pci_dev structure arguments since we don’t actually have
a physical device.

; i it al i
Compare the resulting kernel and bus addresses; how do they differ? Compare with the value o
PAGE_(FFSET.

In each case copy a string into the buffer and make sure it can be read back properly.
In the case of dna_map_single (), you may want to compare the use of different direction arguments.

We give two solutions, onc with the bus-independeni, interface, and one with the older PCE APT.

Chapter 24

Network Drivers I: Basics

We’'ll consider the layered approach to networking found in Linux, and
how network drivers differ from character and block device drivers. We'll explain how network drivers
are loaded, unloaded, opened and closed.

24.1 Network Layers and Data Encapsulation

.................. 273
24.2 Datalink Layer 0. 0 e, 276
24.3 Network Device Drivers 276
24.4 Loading/Unloading0 uuuinui.. . 277
24.5 Opening and Closing v it 278
246 Labs e 279

24.1 Network Layers and Data Encapsulation

Networking applications communicate with servers and clients which are also networking applications
These applicalions (or daemons) may cither be on remote hosts or on the local machine.

For the most part these applications are constructed to be independent of the actual hardware, type
of network involved, routing, and specific protocols involved. T'his is not a general rule, however, as
sometimes the application may work at a lower level or reguire certain features.

27

274 CHAPTER 24. NETWORK DRIVERS I BASICS

Network Layers

Figure 24.1: Network layers

1 of a number of stacked layers. 'This stack may be

Thus networking can always be seen as consistit
description appropriate for Linux (in which traffic

categorized in a number of ways, but a simple
moves both ways) would be:

o Application Layer: This can be familiar programs such as ftp, http and smtp, that commu-
h as X clients and servers thal communicate either

nicale across the Internet, or programs suc
across the Internet or on the local machine, as well as any custom network application.
lation, error checking protocols, etc. The
TCP (Transmission Control Protocol))
)} connectionless.

s Transport Layer: This is the method of data encapsu
two most common examples are: streaming (nsually
connection-oriented; and datagram (usually UDP {User Datagram Protocol

Other examples include SLIP and PPP.

¢ Network Layer: This describes how data is to be sent across the network, containing routing
information etc. The most common protocols are 1IPV4 {Internet Protocol Version 4) or the
newer TPV6, and Unix for local machine communication. Other examples include ARP and
ICMP

e Datalink Layer: This is the hardware part. It includes both the type of device (Ethernet,
Token Ring, etc.) and the actual device driver for the network card.

24.1. NET ; 1
WORK LAYERS AND DATA ENCAPSULALION 275

Networkin, lications s

endpoints ij zi)/pblga;m\l; hsgnd a].)ndr receive information by creating and connecting to sockets, whose

whether or not the ur):derlj ¢. Data is sent to and received from sockets as a stream. 'l'his,is true

UDP), or connection mie};l;g({i tsrjnsport dlag(er deals with connectionless un-sequenced data (such as
’ e quences t snch & . .)

these layers are possible, such as TCP /1P :r %(]SHI?;I(IPS TOP). Note that various combinations of

The basic data uni

Tho bax :I,l taa;.]tlz 1:£;t ;:f; El(:;vels ‘through the networking layers and through the network is the packet

ol Lt e the do ut also has headers and [ooters containing control information. Within th(;
, ket is described by a socket buffer, a data structure of type sk_buff .

These headers , s .
aders and footers contain information such as the source and destination of the packet
1

various oplions about priorit; i :
: 7 ¥, sequencin i : : : .
with the socket, ete.) Seq g, and routing, identification of the device driver associated

When an icafi TR
and o SEEE;Z??S; rv:;:lies mto_ a socket, the transport layer creates a series of one or more packets
ation. It then hands them off to the network layer which adds more control

llifOIIIld.El()I] d“(! (ie(‘ldes WhEIO th pa.(:kel € FoIn I e 1 ‘ h' n WOIk are IldIldE(i
. (6] 8
3 ’ AT g g, a:Ck tS gO ng out on t (& Ct

When packets of ; .
machini, (;;, I'lads ifos ;iitarez)l*f recel:}fd by the datalink layer, it first sces if they are intended for the local
processes them and hands them off to the network layer, which then passes them

L‘hl‘mlgh ‘10 i;he tI &nSpOI’t 13,& i S (]”e ‘ [+ a aﬂd Eellds
. er Whlch [> " £ y i
. - h ' y G nees h pa,CketS, d,.ﬂd ﬁﬂan StI‘lpS Out Lhc d&t

Data Packet Encapsulation

Datalink {Hardware) !*feadw
{.Eiher‘izet, Device Driver}

Netwoirk Layer iiaadef

ipvd, unix sotked, ete.)

Transpoit Layer Header
(TGP, UDP, etc)

Data Payload

Datalink Footer

IMigure 24.2: Data Packet Encapsul:;tiﬁn

Ag packet, ;
p s move up and down through the networking layers, the kernel avoids repeated copying by

passing pointers to the encapsulated dat. .
and footers as nccessary. a buffer, or payload, in the packet, while modifying headers

276 CHAPTER 24. NETWORK DRIVERS I BASICS

The outermost header and footer correspond to the datalink layer, which describes the hardware,
device driver, and the hardware type of network, such as Ethernet or Token Ring. For instance,
the MAC address will appear here.

The next layer describes the neiwork protocol, such as IPV4, and the innermost header describes
the transmission protocol, such as TCP or UDP.

For reasons of optimization, the network and transporl layer are not as completely separated as they
might be in principle. For instance the network layer implementations may each contain implementa-
tions of the transport layer, rather than passing always through a common code base. For instance,
both Internet and local Unix sockets have their own datagram (connectionless) code.

24.2 Datalink Layer

Applications have no knowledge of the hardware through which the computer will be connected to
the network, except for specialized programs used for monitoring and diagnostic purposes.

For instance the computer may be connected via Ethernet, Bluetooth or Token Ring, each of
which has its own kind of network mterface card (NIC), or through a PPP connection through a
serial modem. BEven within a given hardware type there are many choices; Linux supports probably
hundreds of different kinds of Ethernet N1C’s.

Thus there are two hardware components that the kernel needs to deal with; the datalink layer
(Ethernet ctc.) and the device driver which handles the NIC. These are not completely independent
degrees ol freedom as a given NIC will work only with a given datalink layer; thus the device drivers
are always associated with a given datalink layer.

Generally speaking, applications are independent of both these layers as well as the network and
transport layers.

24.3 Network Device Drivers

We are going to concentrate on the networking datalink layer, i.c., the device driver. We are not
going to consider the application layer or the network and transport layers except for how they
interact with the device drivers.

As for obher classes of devices, network drivers can either be built-in or modular.

Network device drivers are fundamentally diflerent than character and block device drivers and
have no associated filesystem node. Instead they are identified by a name, such as ethO or ppp0.

At the kernel level they work with packet transmission and reception, not read and write
operations. A network driver asks to push incoming packets; other drivers are asked to send a
buffer towards the kernel.

To make writing a network device driver casier, templates are included in the kernel sources. For
ISA hardwarc, the relevant file is /usr/src/ linux/drivers/net/isa-skeleton.c, and for PCI it is
/usr/src/linux/drivers/net/pci-skeleton.c.

24.4. LOADING/UNLOADING
277

24.4 Loading/Unloading

Network drivers are loaded and unloaded with:

#include <linux/netdevice.h>

int register_netdev (struct net_device *);
. 3 - i
void unregister_netdev (struct net_device %)

Slla.ﬂy o1re IEgIS Crs t € deVl e In € 1ni 11 n an €g1SLers 1L 1 1e exit
. il L]d-hza;lrlon Ca]]back fll ctio d unr ,g SL‘ t} X1

The command
ifconfig interface [aftype] options [address]

can be used to start, stop, and configure interfaces.

regist ion i i initi
anglﬁu :igr::}elzdev t()dfun.ctlon invokes a specified initialization routine to probe for the network card
net_device structure, which includes the interface name (which can be dynamicaﬂs;

a'SSIgn ,d‘) UIY gls ter netd () remove ‘ | l‘ Ty
Pt ‘ e e Ve ves t € mLerrace from the hst Of]Ilf}(:l [‘a(.,es. ny memo

The net_devi ; i i i
o le;teai;l evice structure contzm.ns all information about the device, and we will discuss it in detail
proper reference counting it must be allocated and freed dynamically with: e

. - . :
struct net_device *alloc_netdev (lnt sizeof priv const char *name
> El

‘ void (#setup) (struct net_devi ;
void free_netdev (struct net_device *dev); ~device =i

where:

o si N . . .
izeof priv is the size of the priv private data field in the net_device data structure.

® name is the name of the device; if a '
: ‘ 3 ; ormat such as "mynet¥d" is ch i
out dynamically as devices are brought up (myneto, zlyneti))Oseﬂ rhe mame vill o flled

¢ setup() points to an initialization lunction that will set up remaining fields in the data struc

Ire,]_ or st d(‘lrd ne k d 1ce
a an { WO ev l hQ fu 1
. : ot nction ether Setup() can bO USe(], or it can ’]e

For convenience one can call the simpler function:

struct net_device ¥alloc_etherdev (int sizeof privy;
— r

which supplies "eth%d" for the name and points to ether_setup() for initialization.

Olle () (] Never ac !Ile p LV 11& Y S50 W 1 I (] $ 1
Sh u!. [+ cess e ﬁ Jd dlI‘CCtl as [}0 dO 50 0l d ILthblt perio nanc ﬂCle]_[t alld
| Ay y

reference counting, Instead one uses the inline function netdev priv(} as in:

278

struct my_priv *priv =

CHAPTER 24. NETWORK DRIVERS I: BASICS

= netdev_priv{dev);

>priv), as the privale arca is allocated along

One has no need to, and should never do kfree (dev-
with the entire structure, and thus is released at the same time.

the device properly. First your setup () function will get called and then

It is imporlant to initialize
net device. Then specific elements

it can call ether_setup () which gives standard values for an Ether
in the structure can be directly initialized. For example:

void mynet_setup (struct net_device *dav){

ether_setup (dev);

dev->open
dev—>stop
dev->hard_start_xmit
dev—>tx_timeount
dev->do_ioctl
dev—>get_stats
dev->watchdog timeo

= mynet_open;

= mynet_close;

= mynet xmit;

= mynet_timeout;
= mynet_ioctl;

= mynet_getstats;
= timeout;

There may be other functions that you may need to point to as well, if you don’t want the defaults

installed by ether_setup().
aing an int init() function pointer which will be called
older usage which has been retained but should

|

While the net_device slructure also cong
(if it exists) by register_netdevice(), this is an
not be used in new drivers..

Kernel Kernel
Varsion Versicn
Note

Npte

¢ Beginning with the 2.6.29 kernel many function pointers have been moved out of the
netdevice structure into a structure of type net_device_ops. Tor the time being a
compatibility layer has been maintained but will eventually be phased ont as drivers are

migrated over to the new layout. We will discuss this in the next section.

24.5 Opening and Closing

The opening and closing operations of a network device
block devices, although how they are invoked from user-
functions are pointed to in the net_device data structure:

driver are similar to those for character and
space is somewhat different. The callback

24.6. LABS
279

int (#open) {struct net_device *dev) ;
K 2
int (#stop) (struct net_device *dev);

3

As with the oth ; 3 o
nosdodt: th Onzrqi(gllidcr)l{ tdrweIS, lt. is generally a good idea not to allocate resources until they are
but rathes do it “:hen " dre(_;ues‘t interrupts, memory and other resources at device initiaIiza.tiOnl
closing, bat it is ofton mgreog;f?({ 1stﬁ§stlopened, or nsed. Likewise resources may be released upor;
. . 4 clent to let £ i ; . . .

interface is reopened. et them remain until device unloading in case the network

Remember that o i . .
opemed b;r arl:as, te};e(l';z is 11110 ﬁlesyste:m entry point for a network device driver, and thus they are not
the dovia 1 t}f ca:a,- on & device node. Rather a program such as ifconfig will open and ci

> by the use of 1oct1() commands (on socket descriptors) pe close

The openi is i

SIDCS;)FPXIl)gi S;;:qu; :;,Lgcneraﬂy done with sending two of these commands. ‘1he first uses the
' nd to assign an address. "I'he second . l J
in dev->flags to denote turning the interface on. ot STACSTERLAGS fo sch the 1EF-UP bt

The first ; .
The SecSO;(;)I:;nKéEin(dse(t:;rﬁiihe;dd;e@) is handled entirely by the layers above the device driver.
device. & the device on) causes the invocation of the open() method for the

Similaﬂy, Shlltting dOWIl the deVi 7] y .If 1 ". {6 ' h SIOCSIFT LAGS o1~
ce (Sa W. h 1 Conﬁg L h# dOWl:l i3

i - . 0 ildS

IIla.l’l(l [}() (,leal the II I _UI blt, aﬂd]IlVOkeS the dri\rel"s Stop() flln(:ti)on °)

ne 0['. th StepS t}le pell 1Tt I 1 (i Nl lSl TIOTI 18 l e ware £ [Tress 1In
8] 15 [¢] () aLno i ’ e
i >d i i ,] . I I , pC.f T 15 LO gOL h }lard are MAC a& d 35] LU

Anotllel' Step I'eqlllI‘E'.d 18 tO Slal‘ llp ‘]Ie tr arnns (! 2uc £ (e € a nu
5 = . m f
j]]ﬂ(,i 10118 a880cCc1a, I (:d “Hi.].-] - nsmit el fOr trh o d VICe, J_here ar]Hbel (&)

vo%d net?f_start_queue (struct net _device *dev);
vo?d netif_stop_queue (struct net_device *dev):

R 2
void netif wake_queme (struct net_device *dev) ;

Tg:ﬁgto;;er:ggp{orﬂzl‘iz?;lzfitlon.) the function netif_start_gqueue() starts up the transmit queue

e anc_l Shou_lqd euol) I 1:10131(;111 can be used to mark the device as unable to transmit any morc;

packets and s tempomry.ghu ;f—ll e f{1\:op() method; the function netif_wake_queue() is used to

s Lomporas: shuat .own. ..here are some auxiliary functions which can be used to inquire
e transmit queue; see /usr/src/linux/include/linux/netdevice.h. !

, . .
We'll return to these functions when we discuss transmission

24.6 Labs

Lab 1: Building a Basic Network Driver Stub

Write a basic network device driver.
Tt should register itself upon loading, and unregister upon rermoval
Supply minimal open(} and stop() methods.

You should be able to exercise it with:

CHAPTER 24. NETWORK DRIVERS I: BASICS
280

insmod labl_network.ko
ifconfig mynetQ up 192.168.3.197
ifconfig

Make sure your chosen address is not being used by anylhing else.

i i ing, i or pin,
Warning: Depending on kernel version, your stub driver may crash if you try to bring it up or ping
it. If you put in a brivial transmit function, guch as

Chapter 25

i *dev
static int stub_start _xmit{struct sk_buff *skb,struct net device)
1{

dev_kfree_skb (skb);
return ¢;

¥

Network Drivers I1: Data
Structures

this should avoid the problems.

We'll consider the important net_device and sk buff dats sbructures, and the functions which
manipulate socket buifers.

25.1 net_device Structure

.............................. 281
25.2 net deviceops Structure, ... 287
25.3 sk buff Structure L L 289
25.4 Socket Buffer Functions 290
25.5 Labs 293

25.1 net_device Structure

The net_device structure is defined in /usr/src/ linux/include/linux/netdevice.h. It is a large
structure with many kinds of fields.

The first set of important entries includes:

281

CITAPTER 25. NETWORK DRIVERS II: DATA STRUCTURES

282
Table 25.1: Some important netdevice structure elements
17 [ield Meaning
Name of the interface. If it contains a %d format

char name [TFNAMSIZ] string, the first available integer is appended to the

base name (starting from 0). If the first character
is blank or NULL, the interface is named ethn.

3 ¢ : d.
unsigned long mem_end Shared (on-board) memory en

unsigned long mem_start Shared memory start. (Total on-board memory =

end-start.)

Device 10 address. Assigned during device probe.

4 b _addr .
unsigned long base (0 for probing, 0xFFe0 for no probing)

unsigned char irg Device IRQ number

ices wi Itiports, specifies which port.
unsigned char if_port On devices with multipo D

DMA. channel allocated by the device (as on

unsigned char dma ISA.)

ice st i ding several flags.
unsigned long state Device state, including £

Tells the kernel about any special hardware capa-

i features £
e e bilities possessed by the device.

Next device i the linked list of devices beginning
at dev_base.

struct net_device *next

ipt (kinit) (struct net_device Device initialization function.

*dev)

"I'he rest of the structure has many different fields, most of W}Eli.ﬂh are assigned at ,de\{ice initll?hzfa;t}l}g];
These describe device methods, interface information, and utility fields. We won’t discuss all o)
fields

i 5 int icc ines.
"The device methods section includes pointers to the device methods, or interface service rout

The most important are:

25.1. NET_DEVICE STRUCTURE

283

Table 25.2: netdevice functional methods

Field

Meaning

int (*open) (struct net_device *dev);

Open the interface, whenever ifconfig activates
it, Should register resources {I/O Ports, IRQ,
etc.}, turn on hardware, etc. (fundamental)

int (*stop) (struct net_device *dev);

Stop the interface. Reverse the open operations.
(fundamental)

int (+*hard_start_xmit)
(struct sk_buff *skb,
struct net_device *dev);

Hardware start, transmission. Send the packet in
sk_buff. (fundamental)

int (#poll) (struct net_device *dev,
int *quota);

Method for NAPI-compliant (interrupt-
mitigated) drivers (o operate in poll mode, with
interrupts disabied. (optional)

int (*hard_header)

(struct sk_buff *skb,

struct net_device *dev,

msigned short type, void *daddr,
void *gaddr, unsigned len);

Build the hardware header from the source and
destination hardware addresses. (fundamental)

int (*rebuild_header)
(struct sk_buff *skb)

Rebuild the hardware header before packet is
transmitted. (fundamental)

void (#set_multicast_list)
(struct net_device #dev);

Called when multicast Iist. for the device changes,
or flags are set. (optional)

int (#set_mac_address)
(struct net_device ®dev, void *addr):

H

If the interface permits the hardware address to
be changed. (optional)

int (*do_ioctl)
(struct net_device *dev,
struct ifreq #ifr, int cmd);

Perform interface-specific ioct] commands. (op-
tional)

int (*set_config)
{struct net_device *dev,
struct ifmap *map);

Change the interface conliguration. (fundamen-
tal)

struct pet_device_stats
(#get_stats) (struct net_device *dev);

Gathers statistics for reporting, such as to ifcon-
fig. (fundamental)

struct iw_statistics
*(*get_wireless_stats)
(struct net_device *dev);

Gathers statistics for wireless devices, such as to
ifconfig. (fundamental)

int (#change_mtu)
(struct net_device *dev, int new_mtu);

If there is a change in the MTU (Maximum
Iransfer Unit), do actions. (optional)

void (*tx_timeout)
(struct net_device *dev);

Handle transmission (TX) timeouts. (fundamen-
tal)

284

CIIAPTER. 25. NETWORK DRIVERS II: DATA STRUCITURES

int (*header_cache)
(struct neighbour *neigh,
struct hh_cache *hh);

Fills in the hh_cache structure with the results
of an ARP query. (optional}

int (*header_cache_update)
(struct hh_cache #hh,
struct net_device *dev,
unsigned char *haddr);

Updates destination address in the hh_cache
structure. (optional}

int (*hard_header_parse)
(struct sk_buff *skb,
unsigned char #*haddr);

Txtracts the source address from the packet in
skb, and puts it into the address pointed to by
haddr. (optional)

A number of other ficlds describe interface information.

Some of them pointing to initializing

functions are:

Some other interface fields that can be set directly,

Table 25.3: netdevice interface information

Field

Meaning

void ltalk setup
(struct net_device *dev};

Inilialize fields for a LocalTalk device.

void fc_setup
{struct net_device *dev);

Tnitinlize fields for fiber channel devices.

void fddi_setup
{gtruct net_device *dev);

Tnitialize helds for fiber distributed data interface
(FDDI).

void hippi_setup
{struct net_device *dev);

Tnitiatize fekds for o high-performance parallel inter-
face (HIPPI) high speed interconnect driver.

void tr_configure
(struct net_device *dev);

Tuitialize ficlds for token ring devices.

functions are:

if you can't do it through one of the above

Table 95.4: netdevice directly set fields

Field

Meaning

unsigned short
hard_header_len;

[Tardware header length (number of bytes before the IP or
other protocol header, 14 for Ethernet.)

25.1. NET DEVICE STRUCTURE

unsigned mtu;

Maximum transter unit. (Default for Ethernet is 1500.)

unsgigned short type;

Interface hardware type. (For Ethernel is ARPHRD_ETHER.)

unsigned char addr_len;

MAC address length (6 for Ethernet.)

unsigned char
broadcast [MAX_ADDR_LEN] ;

Hardware broadcast address (6 byles of 0x£f for Ethernet.)

ungigned char
dev_addr [MAX_ADDR_LEN] ;

Hardware MAC address,

unsigned short flags;

Interface flags.

285

The flags entry is a bitmask of the lollowi i i
, w ¢
whort 110, ston or ot ing (defined in /usr/ src/ linux/include/linux /if.h),

Table 25.5: netdevice flags

[Field

Meaning

IFF_UP

Interface active.

IFF_BROADCAST

Interface allows broadeasting.

IFF_DEBUG

Turn on debugging (verbose).

TFF_LOOPBACK

Is a loopback interface.

IFF_POINTOPOINT

Indicates a point-to-point link, such as ppp.

IFF_NGTRAILERS

Avoid use of trailers. For BSD compatibility only.

IFF_RUNNING

Interface resources allocated.

IFF_NOARP

Interface can’t perform ARP, such as for ppp.

IFF_PROMISC

Interface is operating i i
Z promiscuously (secing all ;
the network.) a # ol packels on

TIFF_ALLMULTI Interface should recetve all multicast packets.
T :

FF_MASTER Master interface for load equalization (balance).
IFF_SLAVE

Slave interface for load cqualization (balance).

286 CHAP'I'ER 25. NETWORK DRIVERS II: DATA STRUCTURES

IFF_MULTICAST Interface capable of multicasting.

IFF_VOLATILE IFF_LOOPBACK | IFF_POINTOPOINT] IFF_BROADCAST |
IFF_MASTFR | IFF_SLAVE | IFF_RUNNING

IFF_PORTSEL Device can switch between dilferent media, such as twisted
pair and coax.

TFF_AUTOMEDIA Automatic media select active.
IFF_DYNAMIC ‘Address of interface can change, such as a dialup device.
L

The features field is a bit mask of the following potential hardware capabilities of the device:

Table 25.6: netdevice features

Field Meaning

NETIF_F_SG Can use scatter/gather 1/0; can transmit a packet split into
distinct memory segments.

NETIF_F_IP_CSUM Can do checksum of TP packets but not others.

NETIF_F_NO_CSUM No chocksums ever required (such as a loopback device).

NETIF_F_HW_CSUM Can checksum all packets.

NETIF_F_HIGHDMA Can DMA to high memory; otherwise all DMA is to low
memory.

NETIF_F_FRAGLIST Can cope wibh scatter/gather I/O — used in loopback.

NETIF_F_HW_VLAN_TX Has transmit acceleration for 802.1g VLAN packels.

NETIF_F_HW_VLAN_RX TIas receive acceleration for 802.1g VLAN packets.

NETIF_F_VLAN_FILTER Can receive filtering on the VLAN.

NETIF_F_VLAN_CHALLENGED Gets confused and should not handle VLAN packets.

NETLF_F_TSO Can perform offload TCP /IP segmentation.

NETIF_F_LLTX Can do lock-less transmission.

25.2. NET DEVICE_OPS STRUCTURE
287

I'he final set, of fields are utility fields and hold status information, The important ones are:

Table 25.7: netdevice utility fields

Field Meaning

unsigned long trans_start; The jirrfi
i _ ; ¢ jiffies value when transmissi
: on began.
msigned long last_rx; is presently unused.) cgon. (1astrx

int watchdog_timeo; ind i in i
g ; Minimum time (in jiffies) before the tx_timeout()

function should be called.

void #*priv; i i
; A pointer the driver can usec at will; a good place to store

data.

struct deu mc_list *#mc_list Uq é (“e m “] s
— — _ H [s Cd tO hd,n
u Cabt tfa:n; MESS101.

spinlock_t xmit_lock;
int zmit_lock_owner;

Used to avoid multiple calls to the transmission function,
(Not to be called by the driver itself.)

25.2 net device_ops Structure

The netdevice structur 7 k to Li i
e dates back to Linux’s earliest days, continuously accreting new felds as

new (ypes of devices with new features eai i
e ained] ¢ i iliti
A gained Linux support, and as new networking facilities were

:jdpzr!; ofha I;LOVG to bring the beast under control a new data structure of type net_device_ops was
WOIE d]el'; i e .2.29 I_(e%"nel. It c.onta.ms the %‘unction potnters for the various managem:snt hooks [gr net-
€5, A pointer to this struclure is now contained in the netdevice structure. The deta.ile;i

structure is defined in fusr/src/li i i i
poructure is dof /usr/src/linux/include/linux/netdevice.h and including all conditional

struct net device_ops {
int (#ndo_init) (struct net_device *dev);
void (#ndo_uninit) (struct net_device *de;)'
int (*ndo_open) (struct net_device *dev) ; ’
%nt (#ndo_stop) (struct net_device *dev);
int (*ndo_start_zmit) (struct sk_buff #*skb, struct net_device ¥d :
u1§ (#ndo_select_queue) (struct net_device *dev struc; sk_buff .
void (*ndo_ChangEgrx_flagS) (struct net_device *éev int fl— u)- o)
void (#ndo_set_rx_mode) (struct net_device *dev); ’ e
?oid (#*ndo_set_multicast_list) (struct net_devic; *dev) ;
int (*ndo_set_mac_address) (struct net_device *dev, vo;d *addr) ;
;

288 CHAPTER 25. NETWORK DRIVERS 1L DATA STRUCTURES

int (#ndo_validate_addr) {(struct net_device *dev);
int (*ndo_do_ioctl) (struct net_device *dev, struct ifreq *ifr, int cmd);
int {*ndo_set_config) {(struct net_device #dev, struct ifmap *map) ;
int (*ndo_change_mtu) (struct net_device *dev, int ney_mtu) ;
int (#*ndo_neigh_setup) {struct net_device *dev, struct neigh_parms ¥};
void (#ndo_tx_timeout) {(struct net device *dev);
struct net_device_stats* (*ndo_get_stats) (struct net_device *dev) ;
void (*ndo_vlan_rx_register) (struct net_device *dev,struct vlan_group *grp);
void (#ndo vlian_rx add_vid) (struct net_device *dev, unsigned short vid);
woid (#ndo_vlan_rx_kill_vid) (struct net_device *dev, unsigned short vid);
void (*ndo_pollﬁcontroller) (struct net_device *dev);
jnt {(*ndo_fcoe_ddp_setup) {(struct net _device *dev, uilé xid,

struct scatterlist #sgl, unsigned int sgc);
int (*ndo_fcoe_ddp_done) (struct net_device *dev,ulf xid);

};

The header file extensively documents each of these functional methods.

You would initialize the structure with something like:

#ifdef HAVE_NET DEVICE_OPS

static struct net_device_ops ndo = {
.ndo_open = my_open,
.ndo_stop = my_close,
.ndo_start_xmit = stub_start_xmit,

};

#endif

and then in your setup routine you have to place the structure in the net_device structure, as in:

struct net_device *dev;

#ifdef HAVE_NET_DEVICE_OPS
dev->netdev_ops = &ndo;
#else
dev->open = mMy_open;
dev-»stop = my_close;
dev—>hard_start_xmit = stub_start_xmit;
#endif

where we show code snippets that will work with older and newer kernel versions.

You can do things either way as long as CONFIG_COMPAT_NET_DEV_OPS is set in the kernel conliguration
file; in version 2.6.31 this option will no longer be available as all in-tree drivers will have been migrated
Lo the new structure.

Other changes to the netdevice structure arc also in the works, such as moving network protocol

information out of if.

25.3. SK_BUFF STRUCTURE
289

25.3 sk_buff Structure

in‘iiily:]lél}]lgin?;l/zif f;}llmo¥habout socket buffers is confained in the header file /usr/src/linux/
utl.h. lhe skbuff structure is another compli ibi
socket buffer, which is the data structure that holds a packet. plicated stracture, describing the

Socket Buffer (skii)

e head
head room

= Gata
data buffer

R G|
taif roony

IOV

Figure 25.1: Sockei, buffer layout

Leaving out some elements which are used only when netfilter is configured, its felds are:
) :

Table 25.8: Socket buffer fields

Field Meaning

struct sk b ;
sk buff *next, *prev; Next and previous buffers in the linked list.

struct sk_buff_head *list: Linked list of bullers

T :
struct sock *sk; Socket that owns the packet.

struct timeval stamp; Time the packet arrived.

struct n i ; i i
et_device *dev; Device sending or receiving this buffer.

struct net_device *real, dev; Device packel arrived on

union { ... h;
mon L+ i m,l geaders for the transport, network, and link Iayers.
e ma;; an be searched lor information such as source and

destination addresses, etc.

struct dst_entry *dst; Routing information.

290 CHAPTER 25. NETWORK DRIVERS I: DATA STRUCTURES

A control buffer private vartables can be stashed |
into; some work has to be donc to preserve them
across layers.

char cb[48]; T

‘ —>tail - skb->head
unsigned int len; Length of actnal data (skb—>tail - s }

unsigned int data_len; Tength of data buffer(skb->end - skb->data)

unsigned int csum; Checksum.

i i b ket.
unsigned char cloned It is possible to clone the head of the packe

Padket class. (PACKET_HOST, PACKET_BROADCAST,

i kt_type
mmaigned char P T PACKET_MULTICAST, PACKET_OTHERHOST)

3 3 ¥ ive incoming packets.
unsigned char ip_summed; Checksum set by the driver on incoming p

_.u32 priority; Packet queueing priority.

i 3 { e count.
atomic_t users; User referenc

mnsigned short protocol; Packet protocol, from driver.

unsigned short security; Packet security level.

mnsigned int truesize; Bufler size.

Pointer to head ol bufler.

unsigned char *head;

Poiuter to data head in buffer. Usvally slightly

unsigned char *data;
& greater than head.

unsigned char ¥tail; Pointer to tail of data.

Pointer to end of buffer. Maximum address tail

unsigned char *end;
can reach.

void (*destructor} Pointer to optional destructor function for packets.

t(struct sk_buff *);

25.4 Socket Buffer Functions

"There are a number of functions which are used on socket buffers. T}}ey are listed in /usr/src/ lilr-i};x
/include/linux/skbuff.h, and defined in there or in Jusr /src/linux/net /core/skbuff.c. The

most importani ones are:

25.4. SOCKET BUFFER FUNCTIONS

Table 25.9: Socket buffer functions

291

Type

Function

Use

struct sk_buff *

alloc_skb (unsigned int length);

Allocate a new sockel
buffer, pive il a reference
count of one, and initialize
the data, tail, head
poinfers.

struct sk_buff *

dev_alloc_skb (unsigned int length);

Same as alloc_skb() plus
the memory is allocated
with GFP_ATOMIC, so failure
results if resources are not
immediately available, and
some space is reserved be-
lween the head and tail
fields of the packet, for opti-
mization use by kernel net-
working layers.

void

kfree_skb (struct sk_buff *skb);

Drop the buffer reference
count and release it if the us-
age count is now zero. This
form is used by the kernel
and is not meani to be used
from drivers.

void

dev_kfree_skb (struct sk_buff #skb);
dev_kfree_skb_irq (struct sk_buff *skb);
dev_kfree_skb_any (struct sk_buff *3kb) ;

For use in drivers. 'I'he three
forms are non-interrupt con-
text, nterrup! context, or
any conbext.

ungigned char *

skb_put (struct sk_buff #skb,
uasigned int len);

Add len bytes of data to the
end of the buffer, reburning
a poinler to the first byte of
the extra data.

unsigned char *

skb_push (struct sk_buff *skb,
unsigned int lem);

Add 1en bytes of data to the
beginning of the buifer, re-
turning a pointer o the first
byte of the exira data.

unsigned char #*

akb_pull (struct sk_buff #skb,
unsigned int len);

Remove data from the buffer
start, returning a pointer to
the new start of data. The
space released will go into
headroom.

a

292

CHAPTER 25. NETWORK DRIVERS II: DATA STRUCTURES

int

skb_headroom (const struct sk_buff *skb) ;

Returns the number of bytes
of free space at the start of
the buffer.

int

skb_tailroom (comst struct sk_buff *skb);

Relurns the number of bytes
of free space at the end of
the buffer.

void

skb_reserve {(struct sk_buff *skb,
unsigned int len);

Tncrease the headroom of an
empty buffer by reducing
the tailroom; bulter must
be empty. TFor instance
since Fthernet headers arc
14 bytes, reserving 2 bytes
would align the following IP
header on a 16 byte bound-
ary.

volid

skb_trim {(struct sk_buff #*skb,
unsigned int len);

Remove bytes from the end
of a buffer to make it len
bytes long; if the bufler is al-
ready less than this, nothing
happens.

struct sk_buff *

skb_get: (struct sk_buff *skb);

Increment reference counter
for the buffer and return a
pointer to it.

int skb_shared (struct sk_buff *skb); True if more than onc person
refers to the buffer.
void skb_orphan (struct sk_buff #skb); If the bufler is currently

owned, call the owner’s de-
structor function and make
the buffer nnowned; it will
still exist but is not associ-
ated with the former owner.

struct sk_buff *

skb_clone (struct sk_buff *skb,
gfp_t gfp_mask);

Duplicate a socket buffer
with the clone not owned
by any socket. Both copies
share the same packetl data,
but not the structure.

struct sk_buff *

skb_copy (const struct sk_buff *skb,
gfp.t gip_mask);

Copy a sockel buffer includ-
ing its data, so it can be
modified.

25.5. LABS
293

Th , S -
buf(;;::rgcr:%y O;h:r !uncijlo}qs Yor poking into these structures, and for dealing with queues of sockel,
. orbet, Rubini and Kroah-Hartman and the header files for more information.

25.5 Labs

Lab 1: Examining Network Devices

All network devices are linked together i i i
thon walk. g 2t mein gether in a lisk. You can get a pointer to the head of the list and

struct net device *first_net_device (struct net #net};
. r
struct net_device *next_net_device(struct net_device *dev);
- 2

Write a module that works its way down the Tist and prints out information about each driver.

Thig should include the name, an iated i i
esting, » any associaled irq, and various other parameters you may find inter-

Iry doing this with your previous simple network module loaded.

204 CHAPTER 25. NETWORK DRIVERS IL DATA STRUCTURES

Chapter 26

Network Drivers ITI: Transmission
and Reception

We'll study transmission and reception functions for network device drivers, and how to get statistics
on a network driver.

26.1 Transmitting Data and Timeouts 4 0 v v n v v v v v e e 295
26.2 Receiving Data it i e 297
26.3 Statistics L L L L e e e 297
26.4 Labs e e e e e e e e e e 298

26.1 Transmitting Data and Timeouts

Here'’s a simple example of a transmission function:

int my_hard start xmit(struct sk_buff #skb, struct net_device *dev)
{

int len;

295

296 CHAPTER 26. NETWORK DRIVERS IIl: TRANSMISSION AND RECEPTION

char #*data;
struct my_data *priv = netdev priv (dev);

len = skb->len ;
data = skb—>data;
dev->trans_start = jiffies;

/% so we can free it in interrupt rontine */
priv->skb = skb;

mynet_bw_tx(data, len, dev);

return 0 ;

¥

dev->hard_start_xmit = my_hard_start_xmit;

The driver first has to put the data info one or more socket buffers, which are then passed off to a
hardware-specific function, mynet_hw_tx(} (which you will have to write) which is responsible for
actually getting the data onto the device. When it is finished transmitting an interrupt will be issued
and the socket buffers can be freed in the interrupt handler

A timestamp (the present jiffies value) is placed in the dev->trans_start value, and the private
data section of the device structure (dev->priv), which has previously been declared to be some kind
of data structure including a skb field, is also used.

"The above simple function can’t be the whole story. Tn particular one has to deal with transmission
timeouts, or any condition in which the device fails to respond.

When we initialized the net_device structure, we filled in a field for dev->watchdog_timeo. When-
ever a time value greater than the value for {his field has elapsed since dev—->trans_start, and the
socket, buffer hasn’t been freed by the hardware transmission function, the kernel networking code
will canse the tx_timeout () function associated with the driver to be called. This function has to do
whatever is necessary to ensure proper completion of any in-progress transmissions, and do whatever
is necessary to clear up the problem.

One problem that can develop is that the outgoing device generally has only a limited amount
of memory to store outgoing packebs; when that memory is filled, the driver will have to call
netif_stop_queue() to motbily the kernel it can’t accept any more outgoing data, and then call
netif_wake_quene() when it is again ready to accept. Whether the number of possible outgoing
packets is as few as one, or is many, drivers have to be prepared to deal with this eventuality.

Occasionally one might need to disable packet tramsmission from somewhere else than in the
hard_start_zmit () callback function. An example would be in response to a re-configuration re-
quest. Rather than using netif_stop_queue (), one should employ the function:

void netif_tx_disable (struct net_device *dev);

which avoids race conditions by making sure the hard_start_xmit() function is not already running
on another CPU when it returns. The quene is atill woken up as usnal with netif_wake_queue ().

26.2. RIECEIVING DATA
297

26.2 Receiving Data

The interrupt handler will be invoked upon receipt of an interrupt from the ncetwork device, which
H

will determine if it is being called beeause das i
will : a has arrived, or b - een 86 ;
it will do this by checking some registers.) o e data has boon sent. (Normally

Either the handler or the transmission routine it calls must allocate (or reuse) any necessary socket

buffers. Using dev_alloc_skb() for this i i
i - or this allocation can be done at interrupt time since il uses

When the packet has been successtulk i i
e y obtained, the function netif 3
buffer up to the higher network layers in the kerr;el. HO et called to pass the

Here’s an very simple example (without error checking) of a routine which would get called out of

the interrupt handler, which takes as ar i
3 guments a pointer o the ne ice, ¢
of data of known length taken ofl the device: ’ © network devios, and one to a bufler

void mynet_rx{struct net_device *dev, int len, unsigned char #*buf)

{
struct sk_buff *skb;
skb = dev_alloc_skb{(2en+2);
skb_reserve(skb, 2);
memcpy (skb_put (skb, len), buf, len);
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
skb—>ip_summed = CHECKSUM_UNNECESSARY;
dev->stats.rx_packets++;
netif rx(skb);
return;

¥

Since the Ethernet header is 14 bytes long, the skb_reserve() function is called to pad out so the

Internet header can be put on a word boundary. The j i i
. y. The job of the d i , G
e] il o by mot 1 . j e driver is done when the socket buffer

26.3 Statistics

Statistics are stored in a structure, accessed from the of type net_device_stats. They are ac

CCSSCd Lhrough the dev->net_device_stats ﬁm(tion IEI(I W er t i t
l'\ .
) hl(_,h Should return a pOlnt T tO he da. a,

dev->get_stats = mynet_stats;

static struct met_device_stats *mynet_stats (struct net_device #dev)

{
return &dev->stats;

}

The net_device_stats dala structure looks like:

208

CHAPTER 26. NETWORK DRIVERS IIL: TRANSMISSION AND RECEPTION

stTuct net_device_stats

{

}.

The command ifconfig eth{n} will generate
your driver. These can be garnered by looking at the

nnsigned long
unsigned long
unsigned long
unsigned long
mmsigned long
unsighed long
unsigned long
unsigned long
unsigned long
unsigned long

rx_packets;
tx_packets;
rx_bytes;
tx_byves;
TX_EerTors;
{X_errors;
rx_dropped;
tx_dropped;
milticast;
collisions;

/¥ detailed rx_errors: */

unsigned long
unsigned long
unsigned long
unsigned long
mnsigned long
unsigned long

rx_length_errors;
I¥_O0over_errors;
TX_CTC_erIrors;
ry_frame_errors;
rx_fifo_errors;
rx_missed_errors

/% detailed tx_errors */

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

tx_aborted_erxrors;
t¥_carrier_erroxrs;
+x fifo_errors;

/*
/*
/¥
/*
FES
/%
/*
/%
/*

I*
/%
/%
[+
/*

tx_heartbeat_errors;

+tx_window_eITors;

/% for cslip etc */

unsigned long
unsigned long

rx_compressed;
tx_compressed;

26.4 Labs

Extend your stub network device driver to include a tr

total packets received
total packets transmitted
total bytes received

total bytes transmitted
bad packets received
packet transmit problems

no space in linux buffers
no space available in linux
multicast packets received

receiver ring buff overflow
recved pkt with crc error
recv’d frame alignment error
recv’r fifo overrun

receiver missed packet

Lab 1: Building a Transmitting Network Driver

method for dev->hard_start_xmit 0.

While yon are

Once again, you should be able to exercise it with:

insmod labi_network.ko
ifconfig mynet0 up 192.168.3.197
ping ~I mynet0 localhost

or

ping ~bl mynetl 192.168.3

*/
*f
*/
*/
*/
*/
*/
*/
*/

*f
®/
*/f
*/
*/

a report of these statistics, which you can update in
/proc/net/dev entry.

ansmission function, which means supplying a

at it, you may want to add other eniry poinis {o see how you may exercise them.

26.4. LABS

Make sure your chosen address is not being used by anything else

Lab 2: Adding Reception

xtend your transmitting device driver to include a reception function

v .
ou can do a loopback method in which any packet sent out is received

Be careful not to create memory lesks!

299

300 CHAPTTER 26. NETWORK DRIVERS 11l: TRANSMISSION AND RECEPTION

Chapter 27

Network Drivers 1V: Selected
Topics

We'll consider the use of multicasting, changes in the carrier state of the device, and the use of
ioctl() commands. We'll also consider the questions of interrupt mitigation, TSO and TOE, and
MIT and ethtool support.

27.1 Multicasting e e e e e e e e e e e e e 302
27.2 Changes in Link State o i i i i it it i s e e e 303
27.3 doctds . . L e e e e e e e e e e e e e 303
27.4 NAPI and Interrupt Mitigation . .., 304
2750 NAPI Details 0 it i i e e e e e e e, 304
276 TSOand TOE (. it it ittt et et e s et e e e 305
27.7T MM and ethtool 306

301

302 CHAPTER 27. NETWORK DRIVERS IV: SELECTED TOFPICS

27.1 Multicasting

A multicast network paclket is sent to more than one (but not all) network destinations. For this
purpose a unique hardware address is assigned to a group of hosts; any packet, sent to that address
will be received by all members of the group.

For Ethernet this requires that the least significant bit in the first byte of the destination address is
set; at the same time the first bit in the first byte of the device hardware address is cleared.

Multicast packets look no different than any other packet, and thus a device driver need do nothing
special to transmit them. It is up to the kernel to route them to the right hardware addresses.

However, reception of multicast packets is more complex and can require more or less work [rom a
petwork device, depending on its gophistication.

Some devices have no special multicast capability. They receive packets that are either sent directly to
their hardware address, or broadcast to all addresses. They receive multicast traflic only by receiving
all packets; this can overwhelm the system. Such a device will not have the TFF_MULTICAST flag sct
in its net_device structure,

A second class of device can distinguish multicast packets from ordinary ones; they receive every one
and let software decide whether or not is intended for them and should be taken in. T'his has a lower
overhead than the first class.

A third class of device performs multicast packet detection in its hardware. T'his kind of device accepts
a list of multicast addresses to be interested in and ignores all others. This is the most efficient class
of device because it doesn’t bother accepting packets and then dropping them. Whenever the list of
valid multicast addresses is modified, the kernel updates the list the device is aware of.

"T'he method called whenever the list of multicast machine addresses the device is associated with
changes is:

void (*dev—>set7mu1ticast_list)(struct net_device *dev);

(where dev is the device’s net_device structure). The function is invoked whenever dev->flags
changes. If the driver can’t implement this method it should just supply NULL.

The data structure giving the linked list of all multicast addresses the device deals with is:

struct dev_mc_list

{
atruct dev_mc_list *next; /% next address in list */
_ u8 dmi_addy (MAX_ADDR_LEN]; /% hardware address */
unsigned char dmi_addrlen; /* address length */
int dmi_users; /% §# of users */
int dmi_gusers; /* # of groups */

¥

struct dev_mc_list *dev—>me_list;

There are also a number of flags (in dev->flags) which affect behaviour:

27.2. CHANGES IN LINK STATE
303

Tabie 27.1: Multicasting flags

Flag Meaning

IF MULTIC o L i
F AST If not set, the device won’l handle multicagt pa,ckets However, the
. H

set_multicast_list : a1 g
chango, 18t () method will still be called whenever the flags

T Fy :
FF_ALLMULTT Tells the driver to retrieve all multicast packets

TFF_PROMISC i i i
Puts the interlace in promiscuous mode. All packets are received

regardless of what is in dev->mec_1ist.

C bet, Rub%nz and Kﬂ (4] - ¥ t’ln, glve an exampile o |
o7 ah Hﬂ. a7 i i e
) ' () . ‘ pI , f an anlemen a,tIOIl Of th >

27.2 Changes in Link State

tv [¢) ! p 4 p .
'}e W [k ('(Hlne(.-thI]S can gO u a.lld d()Wﬂ dll() to eX[?EIIlal events Sli(,h as lllgglng) £2ai)f0 n a-]ld Ollf

Aln].o"ﬂ; a;]l network de iCCS h [) i y Ol sens a C rer s t
e V ave a cay abl]it f i i f wile: Tese
N 'L ilr . e lng ar T S tate; h T p 5 ,nt i means the

Linux provides the following functions to notify the other networkin

or down or to inquire about it: & layers when the state gocs up

void netif carrier_on (struct nmet_device #dev) ;
r

void netif carrier_off (struct net_device *dev);
- s - - ’
int netif carrier ok (struct net_device *dev):

?

The on and off functions should b
e called whenever the dri :
also be called to bracket a major configuration change, or T;;’:; detecta a change of siale. “They may

The final function just checks the net_device structure to sense the state

27.3 loctls

When an ioct1() command is
! s passed to a socke(descriptor, { i ;
defined in /usr/src/linux/include/linux/ sockios.;ll.p o, the command i first compared to those

If the command is a socket configuration command, such as STOCSIFADDR i

by high levels of the networking code. bis directly acted upon

The Comma,l‘ld ma-y a]SO be one Of n [~ pe(jll]l(‘ 1018 (4] e |
l.he pI‘0|OC01) i_ﬁ i i T
(,a,SC, th{) !Jhi{d anlllIlellf, fto i oc tl() : : “ M deﬁn d m the hea:de ﬁl = ¥il eith()l‘

- » i t i
s v lome fineTude ot pomter to a structure of type struct ifreq, defined

304 CHAPTER 27. NETWORK DRIVERS IV: SELECTED TOFICS

i i ; defined in the
If the kernel doesn’t recognize the command, it 18 passed to the do_ioctl () method define
driver.

i i int cmd);
int (#do_ioctl) (struct net_device *dev, struct ifreq ¥ifr, in

1 . h
For this purpose 16 commands arc seen as private to the device (SIOCDEVPRIVATE throug
Fo
SIOCDEVPRIVATE+15.) o
f fructure.
Note that the ifr field actually points to a kernel-space copy o% the Fser-pasaosod:t;i : (r)uc
;he érivcr can freely use this structure without resort to functions like copy_to_ .

97.4 NAPI and Interrupt Mitigation

i i iver is to have the arrival of each packet accom-
i d to write a network device driver 15 ‘ : ‘ -
Theisgrzfiio;fzfrugs yThe interrupt handler does the necessary work (111(:111(?11(111gt gueucing up wor
an : . : s a
?01" delerred processing, perhaps through a tasklet) and then is ready for more da

24 W ViCe: [5] o i &) dwidth

For hi h—band idth devices such an a,pproach starls to cause probl‘em{_%, cven tlf thto quTban V\Ilt |

C&:l be maintained the amount of CP U time expended to keep up with it can star overwhelm he
2

system. ‘ | -
The 2.6 kernel contains an alternative method, or interface, based on polling the device. "
interfa.ce is called NAPT (New API) for lack of a betfer name.)
- o
A device capable of using NAPT must be able to store some number of packets (either on board o
A device ¢

i ory DMA ring buffer). It also must be capable of disabling interrupts kflor packzz geceptlon
) m i - - a ,
f:;li]l[; Icrfntingmg to issue interrupts lor successful transmissions (and possibly other even

[lion i iodically polls
Gi these capabilities, a NAPI-based driver turns of! reception mtgrr_upts, a:nd petrur)rcliégalbic I]; o
ljiezonsumes accumula,ted events. When traffic slows down, normal interrupts are tu
an

and the driver functions in the old-fashioned way.

i i ices din
One should repeat that NAPT- based drivers exist for only a fe.:w .hlgh bl&nd“tngth ?:gc((;}; {?Iioad_
geI::aral do not directly improve throughput. However they very significantly cut dow

27.5 NAPI Details

e capabilities for the device (the ability to turn oﬁ inte.rn“upts
ficient amownt of data packels), the first step in v-vntmg a
to add two new ficlds to the net_device data

Assuming one has the necegsary hardwar
for incoming packets and to store a sul cient amc
network driver that includes interrupt mitigation is
structure:

dev-»poll = my_poll;
dev->weight = my_weight;

Th () method will handle the data that has accumulated while incoming ds_xta mtl(]ari‘}l:ptzs t?:j
— ' m ieht parameter indicates how much traffic should be accepted throug the 11;_ v
e or 1 13}11]% ‘Te:(ifa.cgs it should be set to 16; faster interfaces Shm_ﬂd use 64. The weight fe
Zi?&igoilc}tobe set.nio a number greater than the number of packets the interface can store.

27.6. TSO AND TOE 305

One must also rewrite the interrups handling routine so that when an incoming packet is received

(with incoming interrupts enabled obviously) it should turn off further reception interrupts, and hand

the packet off to the function netif_rx_schedule {(struct net_device *) which will induce the
poll () method to be called eventually.

The poll (} method looks like:

int (*poll) (struct net_device *dev, int #budget) ;

where the budget argument is the maximum number of packets which the function cen process.

As packets are processed, they are fed to netif_receive_skb(), not to netif_rx() as in normal
reception functions.

If the method is able to process all available packets it turns receplion interrupts back on, calls the

fonction netif_rx_complete() to turn off polling, and returns a value of 0. A return value of 1
indicates more packels need to be processed.

27.6 TSO and TOE

The purpose of TSO (TCP Segmentation Offload) is to allow a buffer much larger than the usual
MTU (maximum transfer unit), which is nsually only 1500 bytes, to be passed to the network device.

The breaking down (segmentation) of the large buffer into smaller mbulimited segments than can
pass through routers, switches, etc, is normally done by the CPU before data is passed to the device,

TNowever, with TSO, a 64 KB buffer is broken into 44 mtu-gized segments on the device itself. Bach
fragment, or packet, has attached to it the TCP and IP protocol headers, using a template.

The net result is a potentially large reduction in the load on the CPU rather than an increase of

bandwidth, as is the case with many advanced techniques. Generally TSO will be important only
for high-bandwidth, such as 1 GB or greater network devices.

The purpose of TOE (TCP/IP Offload Engine) technology is to move TCP /IP processing to an

integrated circuit on board the network card. As with TSQ, the idea is to free up the CPU to do
other work.

Unlike TSO, the TOE mechanism affects both inbound and outbound traffic. Because it is a
connection-oriented protocol, there is a lot of complexity involved.

In Linux, however, kernel developers have rejected inclusion of TOE while they have heartily em-
braced TSO. One reason is thai performance levels are not enhanced enough to justify the complexity.

Furthermore, since the TCP/IP stack is implemented on the card, often in a black box with cloged
source, it is difficalt to keep security up to date and have behaviour match expectations.

Resource limitations (such as the number of simultaneous connections that can be haudled) are more
limited than they are for Linux in general; this can be used to facilitate denial of service attacks.

For a detailed explanation of why TOE will never be accepted in the main Linux kernel, see
http://linix-net.osdl.org/index.php/TOE.

306 CHAPTER 27. NETWORK DRIVERS IV: SELECTED TOPICS

27.7 MII and ethtool

Many network devices comply with the MII (Media Independent Inter face) standard, which describes
the interface between nebwork controllers and Fithernet transceivers.

The kerncl supports the generic MIT interface with:

#include <linux/mii.h>

struct mii_if_info {
int phy_id;
int advertising;
int phy_id_mask;
int reg_num mask;

unsigned int full_deplex : 1; /% is full duplex? */
unsigned int force_media : 1; /* is autoneg. disabled? */

struct net_device *dev;
int (*mdio_read) (struct net_device *dew, int phy_id, int location);
void (#mdio_write) (struct net_device #*dev, int phy_id, int location, int val);

+;

The key methods embedded in this structure are ndio_read() and mdio_write(), which take care
of communications with the interface. There exist other functions for obtaining information about
and changing the device state, which are also designed to collaborate with the ethtool utility.

ethtool affords system administrators with a handy set of utilities for controlling interface attributes,
such as speed, media type, duplex operation, checksumming, etc. The driver must have direcl support

for ethtool to take full advantage of its features.

The relevant code is found in fuse/src/linux/include/linux /ethtool.h, and includes the
ethtool_ops structure, which contains a list of methods that can be implemented:

struct ethtool_ops {
int (#get_settings) (struct net_device *, struct ethtocl_cmd *);
int (*set_settings) (struct net_device *, struct ethtool_cmd *);
void (*get_drvinfo)(struct net_device *, struct ethtool_drvinfo *);
int (*get_regs_len)(struct met_device *};
void (*getfregs)(stfuct net_device #, struct ethtool_regs *, void *);
void (*get_wol)} (struct net_device *%, struct ethtool_wolinfo *);
int (*set_wol) (struct net_device *, struct ethtool_wolinfo *);
1u32 (*get_msglevel)(struct net_device *);
void {*#set_msglevel) (struct net_device *, u32);
int (*nway_reset} (struct net_device *);
132 (#get_link) {struct net_device *);
int (*get_eeprom_len)(struct net_device *);
int (*get_eeprom) (struct net_device #, struct ethtool_seprom *, ug *);
int (*set_eeprom) (struct net_device *, struct ethtool_eeprom *, ud *);
int (*get_coalesce) (struct net_device *, struct ethtool_coalesce *);
int {+set_coalesce) (struct net_device ¥, struct ethtool_coalesce *);
void (#get_ringparam) (struct net_device * struct ethtool_ringparam #);
int (#set_ringparam) (struct net_device * struct ethtool_ringparam *);

27.7. MU AND ETIITOOL
307

?oid (*get_pauseparam) (struct net_device *, struct ethtool pansepar *);
int (*set_pauseparam) (struct net_device *, struct ethtoolupau e f
u32 (*get rx_csum) (struct net_device *); peuseparan);
int (#set_rx_csum) (struct net_device *,’u32)'

u32 (*get_tx_csum) (struct net_device *); ,

int ({(*set_tx_csum) {struct net_device ¥ ’u32)-

ud2 (xget_sg) (struct net_device #); ’ ’

int (*set_sg)(struct net_device ¥, u32);

u32 (*get_tso) (struct net_device *);

int (*set_tso)(struct net_device *, u32);

int (*self test_count) (struct net_device *);

void (#self_test) (struct net_device #, struc; ethtool _test %, ubd ;
void (*get_strings) (struct net_device *, u32 stringse; u8 *S-H v
int (#phys_id) (struct net_device *, u32); ' -

int E*getfstats_count)(struct net_device *);

void {(*get_ethtool_stat i

M ne:iézzizzt*??t_dev1ce *, struct ethtool stats *, ub4 *);
void (*complete) (struct net_device *);

};

:i :nalblé etht{;)ol for your device you have to set a pointer to this structure in the netdevice struc-
, sing the SET_ETHTOOL_OPS macro. If MII support is also enabled, the functions

mii_ethtool_gset() and mii_ethtool_sset i
e S _ () can be used to implement, the get_settings() and

308

CHAPTER 27. NETWORK DRIVERS IV: SELECTED TOPICS

Chapter 28

USB

USB devices.

Drivers

structures in the USB API. Finally, we'll do a code walkthrough on a simple USB driver.

28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9

What is USB? e e e e e e e 310
USB Topology o i i i e e e s e e e e e e e e e e 310
DPescriptors o it e e e e e e e e e e e e e 311
USB Device Classes v vttt v vt e e et st e i ne s e e 312
Data Transfer 0. i i o it i e e e e e e e e e e 313
USBunder LInUxX i it it i s e et e e e e e e 314
Registering USB Devices 0 ittt it it in e 314
Example of a USB Diriver i 0 i ittt ittt e e n e nn 317
Labs . . . o i e e e e e e e e e e e e e e e 319

309

We'll discuss USB devices, what they are, the standard that describes
them, the topology of the commection of hubs, peripherals and host controllers, and the various
descriptors inolved. We'll consider the different kinds of classes and data transfers possible. Then
we'll see how USB has been implemented under Linux. We review registration/deregistration of
‘We'll describe the entry points to the driver and some of the main functions and data

316 CHAPTER 28. USB DRIVERS

28.1 What is USB?

USB stands for Universal Serial Bus. Tt permits easy connection of multiple peripheral devices to one
port, and automatic, hotplug, configuration of devices attached (and detached) while the computer
is runming. Virtually any type of peripheral (with USB capability} can be connected to a USB port;
i.e., scanners, modems, network cards, mice, keyboards, printers, mass storage devices, etc.

Version 1.0 of the USB specification was released in January 1996 by an alliance of Compaq, Intel,
Microsoft. and NIEC. Version 1.1 was released in September 1998, and version 2.0 was released in 1999.

One thing to be careful about is when considering the USB 2.0 standard, is that when the phrase
Full speed or low speed is used, it stands in for USB 1.1. The newer standard is described as high
speed. '

Up to 127 devices can be connected simultaneously. The USB cable contains four wires; power,
ground and two signal wires. In the original standard, the ideal total bandwidth was limited to
12 Mbil/s, but overheads limited this to something Like 8.5 Mbit/s and realistic performance was
probably as low as 2 Mbit/s. USB 2.0 brought a theoretical speed limit of 480 Mbit/s.

Devices may be either low or high speed, or operate in either mode according to function. A high
speed device hooked up to a USB 1.1 controller or hub will be limited to lower capabilities.

Power can be delivered either through the USB cable or through a peripheral’s own power supply.
A total of up to 500 mA can be supplied through each controller. When a device is plugged in it can
initially grab up to 100 mA and then request more if limits are not exceeded.

The kerncl contains a lot of USB-related documentation in the /usr/src/linux/Documentation
Jush divectory.

Karnel Kernet
Vergion Varsion
Nole Nole

e Support for the new USB 3.0 standard (also known as XHCI} has been included in
kernel version 2.6.31, making Linux the first operating system to incorporate it.

28.2 TUSB Topology

USB ports are incorporated in all recent motherboards. In most cases there are at least 2 ports.
The porls can be connected either directly to devices or to hubs, which themselves can be connected
to more hubs or devices. There is a virtual root hub simulated by the host contbrofler. The total
number of ports plus hubs is 127.

Technically, the physical structure of USB is not that of a bus; it is a tree with upstream and
downstream nodes. Fach device can have only one upstream connection (with a type A connector),

28.3. DESCRIPTORS 311

USB Controller Device

{Virtual Hub)

Hub Device

Hub Dreviee

Iigure 28.1: USB topology

but a hub node can have more than one downstream connection (with a type B connector.)

For USB 1.x, there are two types of host controllers:
» OHCI (Open Host Controller Interface) from Compag.
e UHCI (Universal Host Controller Tnterface) from Intel.

UHCI is simpler and thus requires a somewhat i
. s f : more complex device driver. Peri 3
oqtlly moll o oo s FT D vice driver. Peripherals should work

For USB 2.0, the standard is EHCT (Enhanced Host Controller Interface.)

‘{;;)hon l?eing l_looked up toithe bus, a peripheral identifies itsclf as belonging to one of several classes
en a particular driver is loaded it will claim the device and handle all communication with it

28.3 Descriptors

Inerkice G

Devica Configuratlon ¢
Descriptor

Inlatface 1

Inlettice O
Configusadion 1 \

Interface 1

/ Endpoin
Interiace 2

Figure 28.2: USB descriptors

E,a.cé; I;SB device has a Emique device descriptor, assigned to it when the peripheral is connected
do e bus. In additl(?ll it gets a device number assigned (an integer ranging from 1 to 127). The
escriptor has all pertinent information applying to the device and all of its possible configurations.

A dGViCe haﬂ one or more COIlﬁ rat X pt T I]l]. as e(:E“ W I3
gu at1on dBSC 1 Ors. 8 h S8 i i ati LN
'C . p C lnformdtlon about hO ‘J}l

312

Fach configuration points

3 ot ‘ 1
various alternate settings abou : : :
have three alternate settings, which require diffcrel

to one or more interfac .
i i tance
ce might be used. For ins » &\ '

o e gnt bandwidths: camera activated, microphone

activated, and camera and microphone activated.

Bach interface points to one or more endpo

the device. (All control transfers usc an end point of zero.)

28 4 USB Device Classes

If a device plugged into the USB hub belo‘ngs to aw
to cerlain standards with respect to device and inb o
can be used for any device that claims fo be a member o

in the standard:

Base Descriptor Usage Description
g(l}iss Device Unspecified :];i; pctlgrsss information in the interface de-
01h Interface Audio speakers, microphones. sound cards
. Communications mm—
o poth and CDC Control adapters
03h Interface —Hm mice, joysticks, keyboards
face Device) _
05h Interface Physical force feedback joystick
06h Interface Image digital cameras
(7h Tnterface Printer W————"{
08h Interface Mass Storage WWW
09h Device Hub full and high speed hubs
0Ah | Interface CDC-Data used together with CDC Control
0Bh Interface Smart Card smart card readers
0Dh Interface Countent Security W
0Eh Interface "Video | webcams
I S

CHAPTER 28. USB DRIVERS

e descriptors. Each interface might point to

a video camera could

int descriptors, which give the data source or sink of

oll-known device class, it is expected {;c‘) conf(?rm
crface descriptors. Thus the same device driver

ab class. The ollowing classes are defined

Table 28.2: USB device classes

S
IExamples

28.5. DATA TRANSFER 313

OFh Interface Personal Healthcare | healthcare devices

DCh Both Diagnostic Device USB compliance testing devices

E0Oh Tnterface wireless coniroller bluetooth and wi-fi adapters

EFh Both Miscellaneous ActiveSync delvices

I*Eh Interface Application Specific | irda bridge

FFh Both Vendor Specific devices needing vendor specific drivers

Other devices require a fully customized device driver be written.

28.5 Data Transfer

There are the following types of data transfer to and from USB devices:

Control transfers are short commands that configure and obtain the state of devices. While there
may also be device specific commands, most or all devices will support the following standard set
defined in /usr/src/linux/include/linux /usb_ch9.h:

.6.31: 79 #define USB_REQ_GET_STATUS 0x00
.6.31: 80 #define USB_REQ CLEAR_FEATURE 0x01
-6.31: 81 #define USB_RE(Q_SET _FEATURE 0x03
.6.31: 82 #define USB_REQ_SET_ADDRESS 0x05
.6.31: 83 #define USB_REQ_GET_DESCRIPTOR 0x06
.6.31: 84 #define USB_REQ_SET_DESCRIPTOR 0x07
.6.31: 85 #define USB_REQ_GET_CONFIGURATION 0x08
.6.31: 86 #define USB_RE{]_SET_CONFIGURATION 0x09

.6.31: 87 #define USB_REQG_GET_INTERFACE Ox0A
.6.31: 88 #define USB_REQ_SET_INTERFACE 0=0B
.6.31: 89 #define USB_REQ_SYNCH_FRAME 0x0C
.6.31: 890 /* Wireless USB #/
91 #define USB_REQ_SET_ENCRYPTION 0x0D
.6.31: 92 #define USB_REQ_GET_ENCRYPTIDN 0x0E
.6.31: 93 #define USB_RE(_RPIPE_ABURT Ox0E
.6.31: 94 #define USB_REQ_SET HANDSHAKE 0xOF
.6.31; 95 #define USB_REQ_RPIPE RESEY OxOF
.6.31: 96 #define USB_REQ_GET_HANDSHAKE O0xi0
.6.31: 97 #define USB_REQ_SET_CONNECTION Oox11

-6.31: 98 #define USB_REQ_SET SECURITY_DATA 0x12
.6.31: 99 #define USB_REQ_GET_SECURITY_DATA 0x13
-6.31: 100 #define USB_RE{_SET_WUSB_DATA Dx14
6.31: 101 #define USB_REG_LOOPBACK_DATA_WRITE 0Oxi5
-6.31: 102 #define USB_RE(_LOOPBACK_DATA READ 0Oxig
6

2
2
2
2
2
2
2
2
2
2
2
2
2.6.31:
2
2
2
2
2
2
2
2
2
2
2
2,6.31: 103 #define USB_REQ_SET_INTERFACE_DS 0x17

314 CHAPTER 28. USB DRIVERS

Bulk transfers send information using up to the full bandwidth. Thesc arc reliable (i.c., they are

checked) and are used by devices like scanners.

fers also can take up to the full bandwidth, but they are sent in response to periodic

Interrupt trans
eat the request after a set interval,

polling. II the transfer is interrupted, the host controller will rep

Isochronous transfers take up to the full bandwidth as well, but are not guaranteed to be reliable.
Multimedia devices, audio, video, use these,

28.6 USB under Linux
There are three layers in the USB stack under Linux:

o Tlost Controller Driver (OHCT, UHCI, EIICT).
+ USB Core.

s Device Drivers.

Controller N —

Driver CORE -| Device Driver 2

{QHCI, UHCI) — e
EHCL + Devies Driver 3

{Bevice Driver 4|

Figure 28.3: USB: Controller, Core and Device

The USB core has APT's for both the controtler drivers and the device drivers. It can be thought of
as a library of common routines that both the controller and the peripherals can utilize.

Device drivers need not concern themselves with the parts of API that interact with the host con-
troller. ‘The driver interacts with the Linux kernel by going through the USB core.

28.7 Registering USB Devices
USB devices are registered and unregistered with the following functions:

#include <3inux/usb.h>

int usb_register (struct usb_driver *drv) ;
void usb_deregister (stTuct usb_driver *drv);

usb_register () returns 0 for success, a negative number for failure.

Before the device is registered the all-
can be found in /usr/src/linux/include/ linux /usb.h and looks like:

important usb_driver structure must be fully initialized. T¢

28.7. REGISTERING USB DEVICES
315

struct usb_driver {
const char *name;
int (*probe) (struct usb_interface *intf, comst struct usb_devi i i
void (*disconnect) (struct usb_interface #intf): FAoviee 14 M)
int (*ioctl) (struct usb_interface *intf, unsig;ed int code, void *b
int (#suspend) (struct usb_interface *intf, po_message_t me;s 01)' g
int (#resume) (struct usb_interface *intf); B - e
int (*reset_resume} (struct ubs_interface #intf):
const struct usb_device_id *id_table; '
struct usb_dynids dynids;
struct usbdrv_wrap drvwrap;
unsigned int no_dynamic_id:1;
unsigned int supports_autsuspend:1i;
unsigned int soft_unbind:i;

¥;

name is the name of the driver module. It must be unj
; . 5 unigue am i ill s
in /sys/bus/usb/drivers when the driver is loaded. ! one ol USE drivers, and will show up

zgz:s (t) }t);)ing St](; lhe l'tirfiction used to check for the device, and is called when new devices are
o the us. If the driver feels it can claim the devi inf

the | el if vice (based on the information i
usb_device_id structure passed to it), the routi inttiali et the
: . ' , outine should initialize the devic d
the driver does not claim the deviee, it should return a negative error valie © and retuen zero- 1t

disconnect(} points to the function called i
; when devices are removed from the USB i
suspend () and resume() point to the functions used for power management.) s, wehil

ioctl () will get called when a user-sp: i i

_ ' Ser-space program issues an ioct1() command on the usbf:
tem e'ntry s.xssomated with a device attached to this driver. In practice, only the US;;HS o ﬁlfasy%
for things like hubs and controllers. o core el

Only the main fields have to be set; others are more optional. Thus one might have:

static struct usb_driver my_usb_driver = {

.name = "my_usb_device",
.id_table = my_usb_id_table,
.probe = my_usb_probe,
.disconnect = my_usb_discomnnect,

1d table Polnl 3 LO an ldelltlfy lng 5 tI uct Ire l Y [) ushb (lev ice _id elne 1N
Of]
/ / / — s d r T d /uSI‘/SrC/llnux

struct usb_device_id {
/% which fields to match against? */
_-ulé match_flags;

/* Used for product specific matches; range is inclasive %/

__ulé idVendor;
__uls idProduct;
.._uls bedbevice_lo;
. ulg bedDevice_hi;

/* Used for device class matches %/

CITAPTER 28. USB DRIVERS

316
__u8 bDeviceClass;
_.u8 bDeviceSubClass;
__u8 bDeviceProtocol;
/* Used for interface class matches */
__u8 blnterfaceClass;
__u8 bInterfaceSubllass;
_.u8 blnterfaceProtocol;
/* not matched against */
kernel _ulong t driver_info;
};

¢ structure the device should be matched against.

match_flags sets which of the other fields in th
the USB_DEVICE macros we'll discuss.

Usually this is not set directly; it is initialized by
jdVendor is the unique USB vendor 1D for the device, assigned by the USB controlling body.

jdProduct is the product I and is set by the vendor.

beDevice_lo, beDevice_hi are the Jow and high ends of the vendor-determined product number

bDeviceClass, bDeviceSubClass, bDeviceProtocol are assigned by the USB controlling body

and describe the whole device, including all interfaces.
bInterfaceClass, bInterfaceSubClass, pInterfaceProtocol describe the individual interface.
driver_info can be used by the driver to distinguish different devices from each other when probe ()
is called.

The usb_device_id table is usually initialized using the following macros:

USB_DEVICE(vendor, product)
USB_DEVICE_VER(vendor, product, lo, hi)
USB_DEVICE_INFO{class, subclass, protocol)
USE_INTERFACE_INFO(class, subclass, protocol)

in a straightlorward way. Thus for a simple driver controlling only one device from one vendor you

might have:

static struct usb_device_id my_usb_id_table = {
{ USB_DEVICE(USB_MY_VENDOR_ID, MY_VENDDR_PRDDUCT_ID) Y,
{ } /* Null terminator (reguired) */

s

MODULE_DEVICE_TABLE (usb, myﬁusb_id_table);

The MODULE_DEVICE_TABLE macro is hecessary for user-space hotplug usilities to do their work.

You may have not
but instead point to a structure ol type usb_interface. One can

structures with:

struct usb_device *interface_to_usbdev (struct usb_interface *intf);
void *usb_get_intfdata (struct usb_interface *intf) ;

void #*ugb_set_intfdata (struct usb_interface *intf);

iced that the callback [unctions don’t fefer directly to the usb_driver structure,
go back and forth between the two

28.8. EXAMPLE OF A USB DRIVER
317

The first function retrieves a pointer o the underlying usb_device.

FJ_‘ o i -
. (])lii t(::;;le;) tivrvloti} una;lons tget and sct a pointer to the data element within the struct device driver
1e struct usb_driver pointed to by ti i s ,
nted fo ~dr y the struct usb_interface. With this pri
data pointer nested so deep within the structures, these functions are quite useful o private

The no_dynamic_id field lets a driver disable addition of dynamic device IDs.

28.8 Example of a USB Driver

Q. r to see }lOW ltv a-ll ﬁlS tO (54 I]el } ta. e a 1o a usxy X wers IISI) misc
Iﬂ Ide g tr Ot 3 k Ok L / /Src/llnu

3 dl‘
/1‘10500.(:, a |ela-tlvely Slmpl() dl‘] Vel IOI a type Of I\JI 3 (1eV](Je th&t a.L‘Jd.CheS to/the [JS]E/; pOI/tr

gsec :r?:egﬁfiyg lmr)]lfha,t t]‘:JLe [l)aé'ttof the driver that handles initializing, registering, and probing and
: - Ihe actual data transfer code will of course be qui

: ‘ : ; > quite hard ; is
composed mostly of entry point functions pointed o in the :Ei}.e_operation.':*‘,mi]'alle;)1 (:,I;{l?)?s et b

Note thal one has reference to a file_operations structure as in a character device:

2.6.31: 432 static struct

2.6.31: 433 file_operations usb_rio_fops = {
2.6.31: 434 .OWner = THIS_MODULE

2.6.31: 435 read = read_ric '
2.6.31: 436 .write = write_ri;,

2.6.31: 437 .unlocked_ioctl = ioctl_rio

2.6.31: 438 .open = open_rio, ’
2.6.31: 439 .release = clos;_rio,

2.6.31: 440 };

2.6.31: 441

2.6.31: 442 static struct usb_class_driver usb rio class =
2.6.31: 443 .pame = "rie500%d", T
2,6.31: 444 .fops = 4usb_rio_fops,
2.6.31: 44b .minor_base = RIO_MINDR

2.6.31: 446 }; |

1%? ;ﬂe_ogex_'atio.ns St;ructm‘"e 1:> pointed to by an entry in the struct usb_class_driver, which
will be associated with the device in the usb_register_dev() function call which is d om il
probe () callback function. ’ e 1 made from the

There is also a structure of type usb_driver which points to the callback functions:

;.6.31: 514 static struct usb_device_id rio_table [] = {
.6.31: B16 . { USB_DEVICE(0x0841, 1) } B
— N /* Ric BOD */
2.6.31: 516 {7 '
et o g, /* Terminating entry */
2.6.31: Bi8
2.6.31: 519 MODULE_DEVICE_TABLE (usb, rio_table);
2.6.31: 520 B ’
2.6.31: B21 static struct usb_driver rio_driver = {
2.6.31: 522 .name = "riebO0"
2.6.31: 523 .probe = probe_rio,
2.6.31: 524 .discomnect = disconnect_rio,

318

2.6.31: B2k
2.6.31: B26 };

CHAPTER 28. USB DRIVERS

.id_table = rio_table,

Note that the init function simply registers the usb_driver structure:

B B

,6.31; 529 {
.6.31: B30
,6.31: B31
.6.31: b32
.6.31: 533
.6.31: 534
,6.31: 5356
.6.31: 536
.6.31: B37

N b

.6.31: 530
.6.31: 540 }

MR R RN NN NN

.6.31: 528 static int __init usb_rio_init(void}

int retval;
retval = usb_register(&rio_driver);
if (retval)

goto out;

printk(KERN_INFO KBUILD_MODNAME “: " DRIVER_VERSION not
DRIVER_DESC "\n"};

.6.31: B38 out:

return retval;

Likewise, the cleanup, or exit, function simply unregisters:

.6.31: 544 {
.6.31: B4d
.6.31: 546
.6.31: 547
.6.31: 548
.6.31: 549
.6.31: 550
.6.31: BB1 ¥

MO R R N R NNN

The real work i

6.31: 543 static void __exit usb_rio_cleanup(veid)

gtruct rio_usb_data *rio = frioc_instance;

rio->present = 0;
usb_deregister(&rio_driver);

s done by the probe() and disconnect () [unctions, as far as setting things up and
frecing resources. Note these entry points are called by the USB core, not user-space programs.

The probe(} and disconnect() functions are:

9.6.31: 448 static int probe_rio(struct usb_ingerface *intf,

2.6.31: 449
2.6.31: 450 {
2.6.31: 4b1
2.6.31: 452
2.6.31: 463
2.6.31: 4b4
: 466
: 456
v ABY
: 458
: 459
: 460
;461
: 462
: 463

w W
gy

BRI R BN BN NN
e B I B I I e L1
) L W W W W
proriar g S S 4

fuiry

const struct usb_device_id ¥id)

struct usb_device *kdev = interface_to_usbdev{intf);
atruct rio_usb_data *rio = &rio_instance;
int retval;

dev_info(&intf->dev, "U3B Ric found at address %d\n", dev->devnum);

retval = usbwregister_dev(intf, usb_rio_class);

if (retval) 4
err("Not able to get a minor for this device."};

return -ENOMEM;
}

rio->rio_dev = dev;

289. LABS

319
2.6.31: 464
z.g.iif 222 if (! (rio->obuf = kmalloc(DBUF_SIZE, GFP_KERNEL))) {
2.6.31: e err ("probe_rio: Not enough memory for the output buffer");
.6.31: 7 usb_deregister_dev(intf, &usb_rio_class);

2.6.31: 468 return -ENOMEM;
2.6.31: 469 }
2.6.31: 470 dbg("probe_rio: cbuf . i

L : address:%p", -> ;
2.6.31: 471 "y iemebut);
2.2.31: 472 if (M {rio->ibuf = kmalloc (IBUF_SIZE, GFP_KERNEL))) {
2.6.§i: i73 err("probe_rio: Not enough memory for the input buffer");

.6.31: 474 usb_deregister_dev(intf, &usb_rio_class);

2.6.31: 475 kfree(rio~>obuf);
2.6.31: 478 return -ENOMEM;
2.6.31: 477 }
2.6.31: 478 dbg{"probe_rio: ibuf address:Yp", ri

_ : BB 4 —>1 ;
2.6.31: 479 s FoTibuD);
2.6.31: 480 matex_init (&(rio—>lock));
2.6.31: 481
2.6.31: 482 usb_set_intfdata (intf, rio);
2.6.31: 483 rio->present = 1;
2.6.31: 484
2.6.31: 485 return 0;
2.6.31: 486 }
28.9 Labs

Lab 1: Installing a USB device.

We are going to write a simple USB device driver.
"The driver should register itself with the USB subsystem upon loading and unregister upon unloading

]_h(} pIObe() a]ld disconﬂect () f‘.m(t]OnS qh()l]](] 1ssue |)| i Ul w Neve: vice a!l([
, il -
. . ‘ rlt() he T the de 1¢e 1S Cd or

YO“I lnStl’llC‘tOI‘ Wlll [)&.‘: y
5 al‘()und one or more ‘] HV. S we H s
. SB d EVICES 9 SuCh as b C&Iﬂel‘as, kc bOd.I‘dl al‘!d

By proper use of the usb_device_id table, you can configure your driver either to sense any device

plugged, or only a specific one. You can obtain the w i
. endor and device 1D’ i f
when the USB subsystem senses device connection. ¢ 1% By mofing the output

E{ou }Trill ha:ve 1':0 make sure your ker.nel has the proper USB support compiled in, and that no driver
or the device is alrcady loaded, as it may interfere with your driver claiming the device

Hint: You'll probably want to d i i
by p y 0 do a make modules_install to gel automatic loading to work prop-

320

CHAPTER 28. USB DRIVERS

Chapter 29

Memory Technology Devices

We are going to consider the different types of MTD devices, how they
are implemented, and the various filesystems used with then.

29.1 What are MTD Devices? 321
20.2 NAND va. NOR. i 322
29.3 Driver and User Modules 324
29.4 Flash Filesystems, 324
29.5 Labs L 325

29.1 What are MTD Devices?

Memory Technology Devices (MTD) are flash memory devices. They are often used in various
embedded devices.

Such a device may have all of its memory in flash {which lunctions like a hard disk in that its values
are preserved upon power off) but often it will also have normal RAM of some type.

Flash memory is & high-speed EEPROM where data is programmed (and erased) in blocks, rather
than byte by byte as in normal EEPROM.

EoX|

322 CHAPTER 29. MEMORY TECHNOLOGY DEVICES

MTD devices are neither character or block in type; in particular they distinguish between write

and erase operations, which block devices don't.

Normal filesystems are generally not appropriate for use with flash devices for a nmumber of reasons,

which we’ll detail later, so special filesystems have been designed.

ich the CPU maps pages of memory [rom the flash-

The Execute in Place, or XIP, method, in wh
with copying of pages to RAM first, can be

residing application directly to ils virtual address space,
useful in embedded devices.

Some usefnl references:

Table 20.1: MTD links

http: / /www linux- The main web site for Linux MTD development.

mtd.infradead.org
hibp://www linoxdevices.com/ | A white paper by Chff Brake and Jeff Sutherland about

articles/AT7478621147 html using flagh in embedded Linux systems.

29.2 NAND vs. NOR

"There are two bagic kinds of flash memory: NOR and NAND.

NOR flash devices are the older varicty with these features:

o A linear addressed device, with individual data and address lines; just like DRAM.

o Addrossed can be directly mapped in the CPU’s address space and accessed like ROM.

e Programming and erase speeds arce respectable; erases are slower than programs.

o Function like RAM, access is random.

o The number of erase cycles is limited, about 100,000 or so.

e Recent development of MLC (multi-level cell
be stored per cell, have boosted density and re
although it may come at the cost of reduced performance.

o Traditionally these devices have becn associated with code storage.
NAND flash devices are newer, and have these features:

¢ Addressing is non-linear;
drivers are more complex.

o Access is sequential.

) techniques, in which two bits of memory can

29.2. NAND V5. NOR
393

¢ Densities are much higher the i ; .
tastor. g an with NOR devices, and the speed is an order of magnitode

+ Bad blocks can be a problem; NAND devi i
Bad blocks 5 evices may ship with them, but at : i
fail with time, and thus device drivers have (o do bad block manag’el:;ler: ey raten blocks il

e Traditionally these devices have been associated with data storage

Since 1999 NAND has grown from about one tenth of the total flash markel to most of it

Rﬂgﬂ.rdle‘;S Of Wthh metho h £ Y ashn (ieV (! I.l] (] e € of
e d [€ llIld ,rl ﬂ £
I.D ACCess s lng 1€ us S: f1IX ¢can us th sSame bélS]C I h{)db

Here is a table irom http://www.linu i
. : . x-ratd.infi . i
of the differences between NAND and NOR, dl:rilr‘;ﬁead ore/doc/nand. il documenting some

Table 29.2: NOR and NAND device features

duced manufacturing costs per unit of memory,

- NOR NAND
nterface Bus i/0
Cell Size Large Small
Cell Cost High Low
Read Time Fast Slow
Program Time (single byte) Iast Slow
Program Time (multi byte) Slow Fast
Erase Time Slow Fast
Po - :
wer consumption High Low, but requires additional RAM
Can execute cod
e code Yes No, but newer chips can execute a small
loader ouf, of the first page

Bit twiddl

widdling nee‘u‘]y unre- | 1-3 times, also known as “partial page pro-

stricted gram restriction”

Bad blocks at ship time No Allowed

data and commands are multiplexed onto 8 1/0 lines. Thus, device

324 CHAPTER 29. MEMORY TECHNOLOGY DEVICES

29.3 Driver and User Modules

roach, in which the lower hardware device driver
and need only have simple entry points for
he upper layer is ignorant of the underlying

The MTD subsystem in Linux usecs a layered app
layer is ignorant of filesystems and storage formals,
methods like read, write, and erase. Likewise, t
hardware but handles all interaction with user-space.

T'hus, there are two kinds of modules comprise the MTD subsystem; user and driver. These may

or may not be actual kernel modules; they can be built-in.

User modules provide a high level interface to user-space, while Driver modules provide the raw

access to the flash devices.

Currently implemented User modules include:

e Raw character: direct byle by byte access, needed to construct a filesystem or raw storage.

e Raw block: used to put normal filesystems on flash. Whole flash blocks are cached in RAM.

s FPTL, NFTL: (Ilash Translation Layer Filesystem)
s Microsoft Flash Filing System: Read-only for now.
e Journalling Flash File System (JFFS2): Full read /write, compressed journalling filesys-

tem.
29.4 TFlash Filesystems
Filesystems for flash devices pose some important challenges:
« Block sizes can be relatively large (64 KB to 256 KB}. Under present Linux implement

a block device filesystem can not have a block size bigger than a page [rame of mem
on x86 and many other platforms.)

e NOR. flash has a finite limit to the number of erase cycles per block; typically about 100,000.

Tt is important to use all parts of the device equally.
e "I'here may be bad blocks which must to be locked out.
s Flash memory is expensive, 0 compressed filesystems are attractive.

o Journalling is important ecnhancement; it shortens the power-down procedure.
o Exccution in place is often needed in embedded systems, but it is crthogonal to compression.

A number of different lesystems have been used for flash devices, and let’s consider each in ferm.

initrd (Initial Ram Disk}
to load a basic operating system which could then load essential d

sysiems.

ations,
ory (4 KB

was originally developed for use on floppy based systems, and then later
rivers, such as in the case of SCSI

29.5. LABS
325

When used wi 3 ini :
and thezegxgﬂle :l‘?;]; :;i;r;ozali;‘l?r db begins by copying a compressed kernel from flash to RAM
ramdish. drtvan) in burn decompresses the initrd image and mounts it using the

I]le dlﬁa,d.“a]lha‘ges are fixed s1ze, w I(dh 1S W leflll ar 55 ()j { 17es ll])()n IebClOt. BCLteI dp
h
o . N v 3 oS 3 (i lO ha ge

cramfs i :

ore ;1];1 : ;Si:' clon‘n%n?ssgd read Oa_aly filesystem, where the compression is done at the unit of pages

an mkgra;n I;':(;O é?amas;‘lne;nd Imé)orii'lanti{ system files are placed there. The filesystem is madtls) vfitl;
: , can be checked with th jili i

o ke /usr/src/linux/scripts/cramfs/- e cramisck utility, the sources of which can be

ramfs is a dynamically-sized ramdisk i
o e 2 ndisk, used in a flash filesystem to store frequently modified or

s and it _ . .
_g)ris; lz;:; 1 ;Lf{e(‘irzsl)g;r;ga;l; ‘}Efz ére com;)'let:: read/write, compressed, journalling filesystems Jjifs was
i ommunications in Sweden (http://developer axis .
8 Con : : .axis.c
‘/&]rﬁ's()j, and had no compression. jfs2 provides compression and is develope(l;i) by a te Olmé Slfftwal"e
vodhouse (http://sources.redhat.com/, iffs2). o bonm fed By Boid

'l‘h jﬂ‘SZ ﬁl SVSt m consists of a 1. £5 el es ontaini rmation \N EIPII ” e
£ IS &) b E ist of IlOd 25 (lOg bri ') C ini £ i i
’ | i n, ﬁlC inf 8 . C
ﬁlesyslfem 18 mount ed the entire 10g 15 St,anned to ﬁgure ont hOW to pllt t()gelhf‘ol ﬁlf‘q J

Node i ; i
begi::i iirei:rijttendto ﬂ&s‘fl‘ Sf::quentia]ly from the first block on, and when the end is reached, the
g 18 looped over, This spreads out access over the device; i.e., it provides wear—l;evelin’g

Note that more than one files
system can be used on a fash devic i
o : 5y . sh device. For instance read-onl i
@ uircinput ;121 a cz:amfs filesystem, frequently changing data can be placed on ramfs ang amn;‘:??l
q g read/write access and preservation across reboot can be put on jHs2 , v

29.5 Labs

Lab 1: Emulating MTD in memory

: (4 V it (¢] y (i(‘””(S Oon Y 17 SVS‘(‘!][I yll 1 ne llel[l 1 mein Ty, 151N
l‘_'\l n I (&} II“]I l 1avVe an MTD O i 3
. b | . 0 y cal nlu_la.te t 9 O g

First, i 0 make s ; .

ﬂourcg(gilrelci};l(i‘;? rLO H; € sure Yiu haV(zl all the right facilities built into the kernel. Go to the kernel
F , Tunt make xconfig and ¢ , ; . i -
the 2 flasyatern. g urn on the appropriate MTD options, as well as including

l'l\h : . o) « .

! geﬁ?;;;;an;gog}fzu]ﬁrihdj‘? alﬁ;dir MTDbtuIn on Memory Technology Device Support, pick a level
_ 1), turn on irect char device access..., ete. Also £ T 1
Itg;ngrRAg aﬁd .M D emulat.mn using block device. By default you’ll get a disk 1;1140&% eviitflmlvgg

ase block size. Under Filesystems, turn on JFFS(2) and pick a verbosity level

If you h i
de}})med ag:i ;l;)n(:‘ {zveryt'hmg as modules you may get away without a reboot, as long ag you run
. y rate, recompile, reboot, etc., into the kernel that now includes MTD and JFFS2

Ill‘St we ll tef:lt thC C!lEl.Ia.Cter (!ﬂllﬂ& OT1 Ilile]' £, l (i() ”I[Y Vi 1 y()l] { (5] ”Ie
y t]) = '
de‘] 1Ce 1L p(ie . ac (8] S you ha (&3 LO Illak() sure Ca-tr

mknod -m 666 /dev/mtd0 ¢ 90 0

326 CHAPTER 29. MEMORY TECHNOLOGY DEVICES

Before or after this, you’ll have to make sure to do
modprobe mtdram total _size=2048 erase_size=8

{or leave out the options to get the dofault values you compiled into the kernel.) You won’t have to
run modprobe if you haven’t done this as modules.

You can now use this as a raw character ram disk, reading and writing to i{. Experiment using dd,
cat, echo, etc.

Lab 2: Working with the jifs2 filesystem and the MTD block interface.

In corder to place a jffs2 filesystem on a MTD device it is easiest to first make a filesystem image
on another filesystem, and then copy it over. T'o do this you must have the mkfs.jifs2 utility, which
you can download in source or binary form from http:// sources.redhat.com/jffs2.

You'll need to do
modprobe mtdblock

if you haven’t built this into the kernel.

You'll also have to make the proper device node:

mknod -m 666 /dev/mtdblock(b 31 0

Populate a directory tree (say - /dir_tree) with some files and gubdirectories; the total size should
be less then or equal to the size of M1} ram disk. Then put a filesystem on it and copy it over fo
the MTD block device emulator with:

mkfs.jEfs2 —-d _fdir_tree -0 /dev/mtdblock(

(You may want to separate out these steps so you can keep the initial filesystem image; l.e., do
something like

mkfs.jffs2 -d ./dir_tree -0 jfs.image
dd if=jfs.image of=/dev/mtdblockd

Now you can mount; the filesystem and play with it to your heart’s content:

wkdir ./mnt_ jffs2
mount -t jEfs2 /dev/mtdblockl . /unt_jffs2

Note that you can change the contents of the filesystem as you would like, but the updates will be
lost when you unload the MTH modules or reboot. However, you can copy the contents to an image
file and save that for a restore.

Note that if you have turned on some verbosity you will see messages like

29.5. LABS
327

Feb 20 09:02:48 p3 kermel: r
: ¢ ram_read(pos:52 :
Feb 20 09:02:48 p3 kernel: R oniasats. oo

¢ ram_write(pos:393216, len:12)

Feb 20 09:02:48 p3 kernel: ram_read(pos:262144, len:4096)

Feb 20 09:02:48 p3 kernel: ram_read(pos:266240, len:4096)

Feb 20 09:02:48 P3 kernel: Iaﬂ-’-_Ieﬁd(POS-zi 0336’ 1311.4096)
and B g V Xanine Wll g 1 g 11 }e dl -
of |i€1 SllCh (ha HOS‘.—']C 1llf01mat10n Wthh WIH llelp ou exa at 18 g€0Ig o n t k
N)

NO C ccause] 5 & !“PSyS'ell Ol Can & 1‘(:()[“[[1()(]3 |e [e) !
il (e} ”lfﬂ l) 15 ﬁ'SZ 15 ComprESqed

v ! a

" : ' 3 Y s much more th I nomia.

CHAPTER 29. MEMORY TECHNOLOGY DEVICES
328

Chapter 30

Power Management

We'll discuss how power management is done under Linux, using either
the APM or ACPIT protocols. We’ll consider the possible states the system can be in, and what the
power management functions are.

30.1 Power Management 329
30.2 APM and ACPI 330
30.3 System Power States 331
30.4 Callback Functions 332
305 Labs e, 334

30.1 Power Management

Power management is handled by callback functions that are registered as part of device loading,
The addresses of these functions are supplied as function pointers in appropriate structures such ag
pci_driver, usb_driver, che.

2929

330 CHAPTER 30. POWER MANAGEMENT
At a lower level the device_driver structure will then contain pointers to thesc functions:

strucs device_driver {

int (»probe} (struct device * dev);
int (*remove) (struct device * dev);
void (*shutdown) (struct device * dev};
int (*suspend) {struct device * dev, pr_message_ T state);
int {(*resume) (struct device # dev);

};

Many drivers are written with only some or even none of these functions supplied. This may be
becanse the hardware has no advanced power capabilities.

More often it is because in the rush to getting a working device driver operable, the power management
callback functions are put on the back burner and seen as an enhancement or optimization to be done
later. Unfortunately they are not coded properly or never written.

"T'here has been considerable frustration expressed about this in the kernel developer commumnity, and
even attempts Lo deny incorporation of drivers that [ail to supply these callback functions.

The lesswatts project (http:// www.lesswatts.org) contains a lot of information on tools, docu-
mentation, and methods for getting Linux to take better control of power management and reduce
averall power consumption.

30.2 APM and ACPI

Virtually all x86 mother boards will support either APM (Advanced Power Management), or the
maore recent ACPI (Advanced Configuration and Power Interface.) Other architectures such as
x86 64 also have the ACPI interface.

The big difference is that APM for the most parl leaves power management in the hands of the
system BIOS, and provides an interface o access it. The newer ACPI standard puts the power
management directly in the hands of the operating system, which leads to far more Hexibility and
control. It also leads to much more direct control of peripherals.

If both APM and ACPI are turned on in the kernel, and if the system is compatible with ACPL,
it will override and disable APM. You can not mix and match features of both as they will corrupt

each other.

Both APM and ACPI require the use of user-space daemons (apmd and acpid) which should
be started during the system boot by the usual startup scripts. If the system doesn’t support the
interface, the daemons will quit peacctully.

No matter which power management facility you use, Linux uses the same functions in the device
drivers which simplifies things considerably. The actual interface is (fortunately) not very compli-
cated.

30.3. SYSTEM POWER STATES

331

30.3 System Power States

Under APM there are five states the system can be in:

Table 30.1: APM power states
Ftate Meaning

Full On

Default mode. No power management. All devices are on,

APME
nabled System does work; some unused devices may nobt be powered. CPU

clock may be slowed or stopped.

AP'M Stand is stat,
andhy Enters this state after short period of nactivity; recovery (o the Iin-

abled state should ap inst
§ pear instantaneous. Most devices in a 1
mode. CPU clock may be slowed or stopped. o

APM S i f
uspend Enters this state after long period of inactivity; recover to the Enabled

in{ate:- takes a longer p.eriod of time. System is in a low power state with
AXLUIIIM power savings, with most power managed devices powered

off. CPU clock is sto 5 i
‘ s stopped. System may go into hib i i
implementation which saves paramete{s.g ermation, & spocal

O System off. All power off. Nothing saved.

Ull(IEI A.CI I ﬁheIO B a S"H]‘lar dehlleati T Wlt an 8} (]e] € COrrc On(i 1nces
L 3 h &dd.ll 107 la] Ie Vel f i;all. h CSp €
p ts‘ p . 0 ng g 1, &, d S T ble(}plng, h stales N
Wlt 1 A.I I\’I are Iet ilan.s a-ien.[\‘Kl li]l G’ ‘;i a]l‘li EOI !()1)& il ’“ I e t t are

Table 30.2: ACPI power states

State Value Meaning

Mechanical Off i
G3 Power consumption is zero except for the real-time clock.

Soft OF G2 inj
/85 M}lmmfi}. power used; no user or system code running. Takes
a jong lme to go back to the Working stat .
has to be done to get there. & siato, and o restart
Sleeping G1

Small amount of power used, user code not executed. some
system code running but the device appears off: i.c. 1’1(; dis-
play‘ etc. Not a high latency to return to the W::)rkirjlg state
but it can depend on how it was put to sleep. I'he operatin, :
system does not require a reboot to get goiné. g ;

CHAPTER 30. POWER MANAGEMENT

332
]
i i and system code. Pe-
i GO System using full power, running user : -
Worldne ripherals can have their power state dynamically mo'd_li_icd
and the user can modify power consumption characteristics.
i al ; context be saved and restored
Non- i 4 A special sleep state that lets con ' .
Soap i when power is cut off to the motherboard. (Hlb(?,rnatlon).
e "This storage of state is in non-volatile storage. This statc is
really a sub-state of the Sleeping state.
B

Under ACPT there are also a bunch of Device Power State Definitions. The.y ralnge from DO to
D3. All devices must have DO and D3 modes defined, but D1 and D2 are optional.

Table 30.3: ACPI device power states

]
Value Meaning
D3 Off. No power to the device. Context is lost; operating system must
reinitialize upon re-powering.
D2 Meaning depends on the class of device. Saves more power than D1,
Device may lose some of is conlext.
D1 Meaning depends on the class of the device. Saves more contexi than
D2.
DO Full power to the device, which is completely active, retaining all con-
text,
L

30.4 Callback Functions

The following functi
nsed some of these functions become no-
scheme is being used; but they do have to be able to handle suspend or resume requests.

For PCI devices, power management [acilities should be in-corpora,ted‘ through functions pointe
by elements of the pci. driver data structure associated with the device:

struct pei_driver {
struct list_head node;
char *name;

ons are part of the ACPI interface. If ACPT is not available, and APM is bei'ng
: ops. Drivers do not have to be specifically aware of which

d to

30.4. CALLBACK FUNCTIONS 333

const struct pci_device id #id_table;
int (+probe) (struct peci_dev *dev, const struct pci_device_id #id);
void (*remove) (struct pci_dev *dev);
int (*suspend) (struct pci_dev *dev, pm_message_t state)
int {*resume} (struct pci_dev *dev);
int (¥enable_wake) (struct pci_dev *dev, pcl _power_t state, int enable);
void (*shutdown) (struct pci_dev #dev):
struct device_driver driver;
struct pci_dynids dynids;
};

Devices which reside on other buses have similar data structures which contain pointers to the nec-
essary power managernent funclions. For instance, for USB we have:

struct usb_driver {
struct module *owner;
const char #*name;
int {*probe) (struct usb_interface *intf, const struct usb_device_id *id) ;
void (#disconnect) (struct usb_interface *intf);
int (¥icctl) (struct usb_interface *intf, unsigned int code, void *buf);
int (*suspend) (struct usb_interface *intf, pm_message_t message);
int (#resume) (struct usb_interface *intf);
const struct msb_device id *¥id_table;
struct device_driver driver;

};

Kernels before the 2.6 series contained a generic interface, whose main functions and data structures
were

#include <linux/pm.h>

struct pm_dev *pm_register (pm_dev_t type, unsigned long id, pm_callback callback) ;
void pm_unregister (struct pm_dev *dev);
void pm_access (struct pm_dev *dev);
void pm_dev_idle (struct pm_dev *dev);
int (*pm_callback) (struct pm_dev *dev, pm_request_t rqst,
void *data);
struct pm_dev
{
pm_dev_t type;
unsigned long id;
pm_callback callback;
void *data;
unsigned long flags;
int state;
int prev_state;
struct list_head entry;
I N

"This interface is now marked as deprecated, and should not, be used in new code.

The newer device-tree based interface can handle geometric dependencies; e.g., one must turn off all

PCT devices before turning off the PCI bus. Furthermore it is based on the new unified device model
and is guite straightforward.

CHAPTER 30. POWER MANAGEMENT
334

For a an excellent description of the old and new interfaces look at http://tree.celinuxforum.org
/CelfPubWiki/PmSubSystem.

30.5 Labs

Lab 1: Monitoring Power Usage with powertop

. .) fects
A tool for assessing power consumption can be obtained from http://www.lesswatts.org/projec

/powertop/. |
U’s are being woken up every sccond, and help curtail

. : P .
powertop can monitor how many times C It can also kecp track of total power consumption and

unnecessary activity in order to save power.
suggest, methods of reduction.

To make powertop work CORFIG_TIMER_STATS must be set in the kernel configuration.

Chapter 31

Notifiers

We'll discuss how the Linux kernel implements notifier callback chains
so that interested parties can monitor various kernel resources and subsystems. We'll show how to

creale a notilier chain as well as how to register with a preexisiting one. We'll explain how to write
callback functions and insert them in the relevant chain.

31.1 What are Notifiers?

.............................. 335
31.2 Data Structures, 336
31.3 Callbacks and Notifications 337
31.4 Creating Notifier Chains, . 337
L6 Labs 338

31.1 What are Notifiers?

Sometimes a particular piece of kernel code needs either to inform other parts of the kernel about an
event, of interest, or needs to be alerted to events that may be of interest (o itself. While a number of

methods of such notification have been employed in the past, the present kernel notifier APT was
introduced in the 2.6.17 kernel.

Examples of events which utilize notifiers include:

22K

336 CHAPTER 31. NOTIFIERS

¢ Network device changes.

s CPU frequency changes.

o Memory hoiplug events.

s USB hotplug events.

s Module loading/unloading.

s System reboots.
There are four kinds of notifier chains which can be used:

o Blocking: Callbacks arc run in process context and are allowed to block.

o Atomic: Callbacks are run in interrupt/atomic context and are not allowed to block.

o Raw: Callbacks are unrestricted {as is registration and unregistration) but locking and protec-

tion must be explicitly provided by callers.

s SRCU: A form of blocking notifier that uses Sleepable Read-Copy Update instead of

read /write semaphores for protection.
most often and for simplicity we'll restrict our

The hlocking and atomic types are the ones used
discusgion to these two types.

31.2 Data Structures
The important data structures for notifier chains are the notifier block and the various
notifier_head structures:

#include <linux/notifier.h>

atruct notifier_block {
int (#notifier_call) (satruct notifier block #xblock,

struct notifier_block *mext;
int priority;

unsigned long event, void *data) ;

+;

struct blocking_notifier head {
struct rw_semaphore rwsem;
struct notifier_block *head;

};

struct atomic_notifier_head {
spinlock_t lock;
atruct notifier_block ¥head;

¥

31.3. CALLBACKS AND NOTIFICATIONS '
337

1 Ile Th () i €Te, { all(i lt WIH.
= t C C | 1
eotlflEI Call 15 the unction to I) dl].ed. W Ile[l S()IIlef;]llIlg Of nk SL oCcurs "

The next i i i
e next element shows there will be 2 linked Hst of notifier functions, called in order of priority.

(11 (I)]V(\:rc};:;-t;r};gyf;iat}z::lanjwnt_ works so ’Fhat the: final event called is the one with the highest priority

Lot value [0 noﬁ;;. 0r1t3f field); if the bit NOTIFIER_STOP_MASK is set in the callback function

o \;alugs NdTJI(;*;Zﬁ stop any fu?the'r processing. Other retum values are not confined, but

(ovonmthing o oo o _ DP‘ (everything is fine, don’t call any more modifiers) and NDTIF;' 0K
) inue calling other callback functions) can be used,)

31.3 Callbacks and Notifications

Registering and unregistering callback functions is done with:

int atomic_notifier chain_register {(struct atomic_notifier_head *nh
- 3
‘ . struct notifier_block *nh):;
int blocking notifier_chain register (struct blocking_notifier,head,*nh
struct notifier block *nb); '

int atomic_notifier chain unregister (struct atomic_notifier head *nh
- 3
. . . struct notifier_block #nb);
int blocking notifier_chain_unregister (struct blocking_notifier’head #nh
struct notifier_block #nb); ’

tlr gsziﬁitéct;):ij te}l(l fih? Sirs'tentlhto call the function specified in the notifier block fanclion whenever
nked list in the notifie ic ,
raversi er head, which may be one you created or which previously

Signalling an event to the appropriate notifier chain is done with:

int blockin, ifi i i
fob blocki E;:?E?fler_caliﬁchaln {struct blocking notifier_head #*nh unsigned long event, void *d
i ; : . o
ier_call_chain (struct atomic_notifier head *nh, unsigned long event ,oidl*d taj
, v ata

where the event is specified and a pointer to data can be passed.

Pre-existing notifier chaing ;
s generally foll syt ; . .
functions ao: Vg ow the convention of defining registration/unregistration

vo%d XXX _register_notifier (struct notifier_block *nb) ;
void XXX_unregister NOTIFIER(struct netifier block *nb):

wh i ifier; i
ere XXX specifies the notifier; examples include usb, reboot » cpu_notifier, crypto, oom, and
e r ? > n

netdevice. Occasionally the XXX and th i i
— he¢ register, unregister elements in the names are

31.4 Creating Notifier Chains

Creatling blocking and atomic notifier chains can be done in the either by doing;:

338 CHAPTER 31. NOTIFITRS

#include <linux/motifier.h>

BLOCKING_NOTIFIER_HEAD({notif ier_name) ;
ATOMIC_NOTIFIER_HEAD(notif ier_name);

or

struct blocking_notifier__head notifier_name;
BLOCKING INIT_NOTIFIER_HEAD (notifier_name);

struct atomic_notifier_head notifier_name;

ATOMIC_TNIT_NOTIFIER_BEAD{(notif ier_name);

which create the appropriate notifier_head structures:

31.5 Labs

Lab 1: Joining the USB Notifier Chain

To register and unregister with the already existing notifier chain for hot-plugging of USB devices,
use the exported functions:

void usb_register_nctify {struct notifier_block *nb) ;
void usb_unregister_notify (struct notifier_block *mb);

You should be able to trigger events by plugging and unplugging a USB device, such as a mouse,
pendrive, or keyboard.

Print out the event that triggers your callback function, (Note that definitions of events can be found
in fusr/sre/linux/include/linux Juasb.h.).

Lab 2: Installing and Using a Notifier Chain

Write a brief module that implements s own notifier chain.
The module should register the chain upon insertion and unregister upon removal.

The callback function should be called at least twice, with different event values, which should be
printed out.

You may want to make use of the data pointer, modifying the contents in the callback function.

Chapter 32

CPU Frequency Scaling

Well di . .

caltfbl; (:Ii:S;:l;lss %u)w Linux can adjust CPU frequency dynamically. We'll

ok nctlons. to m(_)mtor or influence changes in policy and ‘s eed
nardware-specific drivers and governors to control the policy. Pee

show how to register notifier
We'll also consider how to w

32.1 What is Frequency and Voltage Scaling?
322 Notifors oy and Vollage Scaling? .. 339

............
..........

323 Drivers ., I~
324 Governors T 342
525 Labs . . o T 343
........................ 344
32.1 i
What is Frequency and Voltage Scaling?
Frequency scalin, it i]
g permits dynan 2 ’
L eauoncy s ynamic adjustments to a CPU’s clock speed (and voltage) according

éhti goal. is to lf)wer power consumption and heat generation;
atlery life and in the case of desktops and servers can prolon; ’
cooling needs, and along the way help save the planet ¢

in the case of laptops this extends
hardware life, lower electric bills and

Q290

340 CHAPTER 32. CPU FREQUENCY SCALING

Obviously, exactly how this might be done is very much hardware-dependent, There are three general

possibifities:
o Tt may be impossible to have any any clock speed adjustment; this is likely on old CPUs.

high and low speed. For instance a laptop might have one high

e There may be only two stales,
speed state to use when on baltery power.

speed state to use when on AC power, and one low

o There will be a finite number of intermediate states in between the lowest and bighest speed.

When it comes to frequency scaling there is a clear separation between mechanism and policy.
"T'he mechanism is encapsulated in the CPU frequency scaling device driver. This has to be written
for each kind of hardware and is responsible for dealing with the actual changes.

The policy is determined by the CPU frequency scaling governor. This can be:

o Performance: The frequency is set to the highest possible.

o Powersave: The frequency is set to the lowest possible.
s Userspace: The frequency can be set manually or dynamically by a user-space program.

e Ondemand: The frequency is adjusted dynamically based on periodic polling of the CPU load.
"The CPU must be capable of fast frequency shifting.
o ondemand, but the frequency is gradually increased or decreased

« Conservative: Similar
"This is more suitable for laptops than desktops.

rather than being done all in one step.

equency are broadcast through the use of notifier chains,

Changes in policy as well as changes in fr
| back lunctions that are invoked when there are changes.

and any kernel component can register cal
Tinux is written in a uniform manner for all architectures,

"The frequency scaling implementation in
lementing new governing policies.

and it ig quite modular especially as concerns imp.

32.2 Notifiers

There are two kind of CPU {requency notifiers; transition and policy.

Registering and unregistering a callback function is done with:

#include <linux/cpufreq.h>

int cpufreq register motifier (struct notifier_block *mnb, unsigned int list);
int cPufreqﬁunregister_notifier (struct notifier block #nb, unsigned int list);

where 1ist can be either CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. Remember

the prototype of a notifier block structure is:

32.2. NOTIFIERS
341

2.6.31: b0 struct notifier block {
2.6.31: 51 int {(*notifi
ier_call) (struct notifier b i
2.6.31: 52 struct notifier_block *next: ~boste®, meigned dong, void v);
2.6.31: 53 int priority; '
2.6.31: 54 };

Transition notifier callback [uncti
: chions are called twic i
. ; e every time the frequency changes, wi
e Witxlrleriil:e avl‘ag{lsgcélgugggl{;g ;g;ﬂEQ_PRECHANGE and CPUFREQR PDSTCHAN{}E %ﬁi}?,c‘;’ghaﬁluss
> L : _RESUMECHANGE and CPUFRE N if) ‘ .
frequency while the system is suspended or Tesuming H-SUSTENDGRRNGE If the OPU changes ts

The third argument to the callback § i
) ¥ ‘ s A A
type: unction for a transition notifier points to a data structure of

2.6.31: 123 struct cpufreq fregs {
2.6.31: 124 unsigned int cpu; /* cpu or */
2.6.31: 125 unsigred int old;
2.6.31: 126 unsigned int new;
2.6.31: 127 uB flags; ,
:oH i
yoa1 1o 1 /% flags of cpufreq_driver, see below. */

Policy notifier callback functions
g are called three times whe icy 1 i
oy no ‘ : : 1 a policy is set. Pirst the; i
event b 1ﬁg CPUFREQ_ADJUST; any notifier can change the limits if they percei) are‘cal'led e
void thermal problems are hardware limitations. ’ o meed, for istance

l ¢ 8eCO. d 6] Q E. (]I an 5 ()l]! y C t
[l (<] I Imeevet;t]lan‘) |h Vallle CPUFR
E: [NC“F{FAI]’BL geL Sh d OI]] b made 8] a.VUId

The third time event is CPUFREQ
> _NOTTFY. All notifiers are inform '
- . Cd - - i i
hardware drivers [ail to agree before this stage, incompatible hardware(;[s z}ﬁitnjgwpdmy a1 two
n.

"The third argument to the callback function points to a structure of type:

2.6.31: 82 struct cpufreq_policy {
2.6.31: 83 cpumask
S 6 a1 ba Cium::km::§_: cpus; /* CPUs requiring sw coordination */
e o unSignea in; Telated_cpus; /# CPUs with any coordination %/
e o shared_type; /* ANY or ALL affected CPUs
et e -) should set cpufreq */
2.6.31: 88 striﬁteipiize cpui CPuf o B of Toglstered CEU */
o o q.cpuinfo cpuinfo;/* see above %/
2.6.31: 80 unsigned int min; /* in kHz */
g.g.gi: 91 unsigned int max; /* in kHz */

.6.31: 92 unsi i :
el signed int cur; /¥ in kHz, only neaded if cpufreq
e o ' ' * governors are used */
2.6.31: 95 struzzszgzgjelnt POy : [oo ebove ¥/
pios » P q_governor *governor; /* see below */
2.6.31: 9
2.8 9; struct work_struct update; /* if update_policy() needs to be
Sea * called, but you’re in IRQ conmtext %/
2.6.31: 100 struct cpufre i

_real i

2 e a1 108 P q_real_policy usexr_policy;
2.6.31: 102 struct kobject kobj;

CHAPTER 32. CPU FREQUENCY SCALING
342

2.6.31: 103 struct completion kobj_unregister;
2.6.31: 104 };

. . . .)
I he 1 ﬁeldS h()re are th(“ (;P [} ﬂumbe‘[', Lhe minimum ar Ki maximum ![(=14} uencies thC Cur IeIlL
N maln 7 il

ﬁcque!lc S‘ 3 aﬂd the pOh(, v,

32.3 Drivers

il i p { CP a.]ld
¥ g 8 3 Wh(}th(ii]l’ s El.pp]."() 1y Ia.le l() the kern +
A ﬁequenc 5 aliu dIlVeI‘ le'Sl haS t;O CheCk to see l . 1§ G‘I ”
ChipS et I_I t . iﬂ t'&h aL].O Ollt (—), ther shou d I bt; bC s0IRE k d O (;h J(.k aﬂd 1 lng
. 1 I!e 111 7 1] 1 L~ 1] 1T 1mn I £ ! 'll 3 Are E‘]()t

suitable the driver should not confinue to load.

. . . ‘the
The registration/unregistration of a CPU frequency driver is donc wit

#include <linux/cpufreq.h>

i i data) ;
int cpufreq_register_driver (struct cpufreqmdr%ver *dr?ver_data;.
int cpufreqfunregister_driver (struct cpufreq_driver #driver_ H

where the cpufreq_driver structure should be filled out first, and looks like:

9.6.31: 211 struct cpufreq driver { \ -

: +ruct module owner; .
2.2.31: gii :h:r name [CPUFREQ_NAME_LEN] ;
2:6.31: 214 uB flags;

2.6.31: 215 '

: * needed by all drivers ¥/ . . -
2‘6.31: gig intn (*init) (stTuct cpufreq#pol%cy *pol%cy;i
2.2'21: 218 int (*verify) (struct cpufreg policy *¥policy);
2.6.31: 2198

: /* define one out of two */ ' _ ‘
2.6.31: 322 int {*setpolicy) (struct cpufreq,pol%cy *poi}cy),
e, int (*target) (struct cpufreq_policy #policy,
D ’ unsigned int target_freq,

; 6.31: igz unsigned int relation);
2.6.31:
2.6.31: 225 . .
2.6.31: 226 /* should be defined, if pOS?lble f/ N
2 6'31' 227 unsigned int (*get) (unsigned int cpw);
2.6.31: 228 L sy
t 229 /% optiomal * .
2.6'31' 230 unsigned int (*getavg) {struct cpufreq_policy *policy,
2'2-21‘ 231 unsigned int cpu);
o a olicy *policy);

i it) (struct cpufreq_p i . .
a1, 231 }nz E::i:pend) (struct cpufreq policy *pol%cy, pm_message_t pmsgl;
2 Z.gii gz: ;zt (*resume) (struct cpafreq_policy *policy);

2 6:31; 236 struct freq_attr *katir;
2.6.31; 237 1;

P - i haS &
I }19 init fll“ 51011 L0311} to ibi i i Q W hlch Wlﬂ e run pCl‘ C U, h C

ini i LS thC 11[}111341 zation luIlCtl n b | I WHT I ‘
i ()].icyc] Ctu as i = a-rgﬂm nl; L .h‘S Cth]l as to a.Ctl abe C ﬁ' qu - Cy S p 0T,
Cpu qu PO iIl] re tS (<) [1 lll]l h V I l] (51 211 u [) T ‘

32.4. GOVERNORS 343

[ill in the ficlds cpuinfo.min_freq and cpuinfo.max_freq (in kHz),

cpinfo.transition_latency
(the time required to switch between two frequencies)

, and varicus other fields.

The verify() function has to validate any new policy to be set. 1t can make use of a table of
permissible values.

One uses either the setpolicy () or target () function pointer, but not both. If the CPU can be set
to only one frequency, the target () call is used; otherwise the setpolicy () function is used.

We won’t discuss this further as the details get very hardware-dependent,.

information about the drivers for various CPUs and chip sets by looking at
/ust /sre/linux/Documentation/ cpu-freq.

Once can find decent

32.4 Governors

The powersave and performance governors are built-

in to the Linux kernel, and merely set the
CPU frequency to the lowest and highest possible frequ

encies.

More complicated governors are possible and are provided with the mainline kernel, and it is possible
to add other governor implementations, either as built-in or with a kernel module.

One has to register /unregister the governor with:
#include <linux/cpufreq.h>

int cpufreq_register_governor {struct cpufreq_governor ¥governor) ;

void cpufreq_unregister_governor (struct cpufreq_governor *governor);

where the cpufreq_governor structure has to be filled out, first and looks like:

2.6.31: 165 struct cpufreq_governor {

2.6.31: 166 char name {CPUFREQ_NAME_LEN] ;

2.6.31: 167 int (#governor) (struct cpufreq policy *policy,

2.6.31: 168 unsigned int event);

2.6.31: 169 ssize_t (#show_setspeed) {(struct cpufreq_policy *policy,
2.6.31: 170 char *buf);

2.6.31: 171 int (*¥store_setspeed) (struct cpufreq pelicy ¥policy,
2,6.31: 172 unsigned int freq);

2.6.31: 173 unsigned int max_transition latency; /* HW must be able to switch to
2.6.31: 174 next freq faster than this value in nano secs or we
2.6.31: 175 will fallback to performance governor #/

2.6.31: 178 struct list_head governor_list;

2.6.31: 177 striuct module

kowner;
2.6.81: 178 };

where the main entry which must be filled in is the

pointer to the governor() callback function,
which can be called with one of the three following values for event:

e CPUFREQ_GOV_START: Start operating for this CPU.

s CPUFRER_GOV_STOP: Tind operating for this CPU.

4 CHAPTER 32. CPU FREQUENCY SCALING
34

e CPUFREQ_GOV_LIMITS: The maximum and minimum limits have changed for this CPU.
"T'he caltback function can call the CPU (requency driver using:

i i } i target_freq,
int cpufreq driver_target(struct cpufreq_policy *policy, unsigned int g q
unsigned int relation);

here Telation can be CPUFREQ_REL_L (try to select a new frequency higher than 0117 :qg}z:,l t(;r t]:i
zva.rzet frequency} or CPUFREQ_REL_H (try to select a new frequency lower than or equal to the targ

frequency.)

32.5 Labs

Lab 1: CPU Frequency Notifiers

Write a module that registers cailback functions for the CPU frequency transition and policy notilier
chains. | o)
Print out what event is causing the callback, and some information from the dala structures delivere
to the callback functions.)
You can test this by echoing values to some of the entries in /sys/ dta.v1ces/sy$tfam/cptt-1/11:(]p;ur
/ op C;eq LEven casier you can add the CPU Frequency Scaling Monitor applet to your taskbar,
cpu . ‘
and easily switch governors and frequencies.

Chapter 33

Asynchronous I/0

We will discuss asynchronous I/0, the functional interface for it, and
methods of implementation under Linux.

......................... 345
33.2 The Posix Asynchronous 1/O APL 346
83.3 Linux Implementation 347
334 Labs 850

33.1 What is Asynchronous 1/07?

Normally all I/O operations are performed synchronously;

an application will block until the read
or write is completed, successfully or unsuccessfully,

Note that this doesn’t mean all pending writes will be flushed to disk immediately, ouly that inter-
action with the virtual file system has been completed.
But what if 1/0 requests could be queued up, and program execution continued in parallel with
completion of the T/O request? This can be particularly useful on SMP systems and when using
DMA, which does not involve the CPU. When this is done, it is called asynchronous I/0, or AIO.

AR

CHAPTER 33. ASYNCHRONOUS 1/0
346

i i ; i te and
In order for this to work properly, there has to be notification when the I/O request is complete
code must contain synchronization points, or completion barriers.

e W] iali i when they
In addition pOll(‘l g mush be set as to hether queued requests ar Sel'la.!lZCd, espeuail
N - v

refer to the same file descriptors. N .

i —0 A
You can request asynchronous I/O by using the ASYNC flag when opellmé)g a file, or the y
option to the mount command, but this won’t give true asynchronous 1/0.

33.2 The Posix Asynchronous [/O APl

the aioch, which stands for AIO control

The POSIX 1.b standard defines a basic data structure, O ot prototyaed

block, and a set of basic functions that can be prarformed on it. T
in /usr/include/aio.h and are provided with glibe:

The data structure looks like: ;

struct aiocb

{ - -
i i i ; /* File desriptor. */
;E: 2;::i;ifz:;ode; /% Operation ?o ?e perior:ed.*/*/
int aio_reqgprio; /* Requeét priority of s:/.
volatile void *aio_buf; /* Location of buffer. Y
size_t aio_nbytes; /% Length of transfer. 2
struct sigevent aio_sigevent; /* Signal number and value.

__offf4d_t aio_offset; /* File offset
};

where we have omitted the purely internal members of the data structure.

aio_fildes can be any valid file descriptor, but it must permil use of the 1seek() c

. - -) f
i lio OPCOde iS u“;ﬁd by t}le lio 115tio() fuI]Cthﬂ and St()leb lﬂf()I]tlatlon &boﬂt the iyp(: O
aLo 1 £
OpC"Iﬁ.tvlﬂll I'D b(‘ pCIfDI [ned‘

i ; 3 i riorities.
aio_regprio can be used o control scheduling p

aio_buf points to the bulfer where the data is to be written to or read from.

aio_nbytes is the length of the bulfer.

i 5 whe ion completes.
aio_sigevent controls what if any signal is sent to the calling process when the operation comp

[; this ig nec because
alo_offset gives the offset into the file where the I/0 should be pe.ﬂ'ormed, this is necessary
doixfg 1/0 operations in parallel voids the concept of a current position.

; [; ibrary, librt.
The basic functions are actually not part of glibc proper, bui are part ol another library, li

These unctions are:

#include <aio.h>

void aio_init (const struct aioinit *init);
int aic_read (struct aioch *cb);

33.3. LINUX IMPLEMENTATION 347

int aio_write (struct aioch *cb);

int iol listio(int mode, struct aiocb *const cblist[], int nent,

int ailo_error (const stract aioch *ch);

ssize t aio_return {(comst struct aioch *cb) ;

int aio_fsync (int op, struct aioch *cb);

int aic_suspend (const struct aioch *cb, const cblist[], int nent,
const struct timespec *timeout);

int aio_cancel (int #£d, struct aioch *cb) ;

struct sigevent #sig);

A typical code fragment might have:

struct aioch *cb = malloc (sizeof struct aioch);
char *buf = malloc (nbytes);

fd = open (....);
cbh->aio_filedes = fd;
cb—>aio_nbytes = nbytes;
cb->aio_offset = offset;
cb->aio_buf = buf;

rc = aio_read (cb);

while {aio_error (cb) == EINPROGRESS){}:

where we use the aio_error () function call

to wait for completion of pending requests on the control
block.

33.3 Linux Implementation

'The original ATO implementation for Linux was done by glibe completely in user-space. A thread
was launched for each file descriptor for which there were pending ATO requests.

This approach is costly, however, if there are large numbers, even thousands,
support within the kernel can lead to far beiter performance. Thus glibe also
parts of the implementation to be passed off to the kernel and done more effi

of such requests; {rue
permits the important
ciently in kernel-space.

The 2.6 kernel contains full kernel support for ATQO; in fact all T

/O is really be done through (he
asynchronous method, with normal 1/0Q being the result

if certain flags are not set.
A document describing the details of this implementation can be found at http: / /1se.sourceforge.net
/io/aionotes.txt.

Block and network device drivers already fully take advantage of the asynchronous implementation.
Character drivers (which rarely require asynchronism), however, need to be modified specifically to

take advantage of the new facility. This means supplying new functions in the f ile_operations
jump table data structure, for:

ssize_t (*aio_read} (struct kioch *ioch,

const struct iovec *iov, unsigned long niov,
loff_t pos);

348 CHAPTTER 33. ASYNCHRONOUS I/O

gsize t (*aio_write) (struct kioch *ioch, comst struct igvec *iov, unsipgned long niov,
loff_t pos);
int (#aio_fsync) (struct kiocb *, int datasync};

As of this writing glibe still does not take advantage of full kernel support for ATIO for Linux. Thus,
even if you put such entry points in your driver, they’ll never get hit. (Actually il you don’t have
normal read and write entry points the kerncl will call the agynchronous ones, if you want to test
thern.)

However, there is a native user-space AP in Linux with new system calls that can be nsed efficiently;
it just isn’t portable. To use this you have to have the libaio package installed, and if you want to
compile code using it yon have to have the libaio-devel package installed. Your code will have to
include the header file /usr/include/libaio.h. The basic functions are:

#include <libaio.h>

long io_setup (unsigned nr_events, aio context T *ctxp);

long io_submit {alo_comtext_t ctx_id, long nr, struct ioch #xiocbpp);

long ie_getevemts (aio_context ¥ ctx_id, long min _mr, long nr, struct io_event *events,
struct timespec *timeout);

long io_destroy {aio_context_t ctx);

long io_cancel {aio_context_t ctx_id, struct ioch *iocb, struct io_event #result);

These functions all have man pages so we won’t describe them completely.

Before any 1/O work can be done, a context has to be set up to which any guened calls belong;
otherwise the kerncl may not know who they are associated with. This is done with the call to
io_setup ()}, where the context must be initialized; e.g.,

io_context_t ctx = 0;
rc = io_setup (maxzevents, &ctx);

where maxevents is the largest number of asynchronous events that can be received. The handle
returned is then passed as an argument in the other functions. The function ic_destroy () will wipe
out the context when you are finished.

"I'he io_submit () function is used to submit asynchronous requests, which have their iocb structures
properly set up.

The io_getevents () function is used to check the status, and io_cancel() can be used to try and
cancel a pending request. (Note; the events argument must point to an array of structures af least
as large as the maximum number of events you are looking at. The documentation is not clear about
this and missing it is a good way to get segmentation fanlts.)

The control block structure itself is given by:
struct iocb {

void *data; /+* Return in the io completiom event */
unsigned key; /# For use in identifying io requests */

short aio_lio_opcode;
short aio_reqprio;

33.3. LINUX IMPLEMENTATION

349

int aio_fildes;

union {
struct io_iochb_common G}
struct io_iocb_wector v;
struct io_ioch_poll poll;
struct io_iocb_sockaddr saddr;

}ou;
EN

struct io_iocb_poll {
int events;
}; /* result code is the set of result flags or -’ve errno */
struct io_ioch_sockaddr {
struct sockaddr *addr;
int lemn;
i

/* result code i
€ is the length of the sockaddr, or -’ve errnc */

struct io_iocb_common {
void *buf ;
unsigned long nbytes;
long long offset;

/* result ¢ i
ode is the amount read or -’ve errno %/

};

struct io_iocb_vector {
const struct iovec *vec;

int nr;
long long offset;
+: /% result code is the amount read or —’ve errno */

\ﬁf [] t b wit, u th e fun t S d ‘Iv clur t & b t d t ‘— “ th
y g y Jh) Sl‘ ase ctions and strm t €35, It can € tedious to Inser a. €
111€ yOu can ge s 3
gh ; values 1 the I‘Ight p £es Ore 51 g q ! PR el D e
Il 1 v I 25 111 ia bel fe 5 l] Ilfl | mg reguests l hPIe are a I”]n]bel ()I h(ﬂ (S} fllIlCtI()] 1S 11

the header file which will do most of {
ile d the work for you. U ;
them. Two in particular you will definitely want; t(): li:se a::f)rmnately the mat pages don't mention

void io_prep pread (struct io i
_ - cb *iocbh, int fd, void #b
. . 0 ’ ? uf
void io_prep_pwrite {struct icch *iocb, int fd, void *buf’ dinet comnt, Lons 1omg alfset);

» Bize_t count, long long offset);

Aft . e .
er calling these functions in an obvious way, you can just call io_submit () {0 get your I/0 goi
Eventually the glibe maintainers wi o
; will get around to doing th i
prontnally _ rs will g d Ing the wrapping necessary + i
Po Z(IO ; tcidbf) used. At t.hat pmn.t, if portability is desired, the native Linux ay lcl)cpte oo thas
should be portable in a straightforward way, if portability is required ppitcations that

350 CHAPTER 33. ASYNCHRONOUS I/O

33.4 Labs

Lab 1: Adding Asynchronous Entry Points to a Character Driver

Take one of your carlier character drivers and add new entry points for aio_read() and aio_write().

To test this you'll need to wrile a user-space program that uses the native Linux API. Have it send
out a number of write and read requests and synchronize properly.

We also present a solution using the Posix API for the user applica,tion;‘ notf: that_ this will nc\:r hltl‘
your driver unless you comment out the normal read and write entry points in which case the kerne
will fall back on the asynchronous ones.

Make surc you compile by linking with the right libraries; use —1:':110 fm{ the Linux APT and -1rt
for the Posix API. (You can use both in either case as they don’t conflict.)

Chapter 34

I/O Scheduling

We consider I/O scheduling, and the various algorithms Linux uses.

34.1 I/0 Scheduling

................................. 351
34.2 Tunables 353
343 noop I/O Scheduler L L L 353
34.4 Deadline I/0 Scheduler 354
34.5 Completely Fair Queue Scheduler 355
34.6 Anticipatory I/O Scheduler 355
347 Labs . .o 356

34.1 1/0 Scheduling

The I/O scheduler provides the interface between the generic block layer and low-level physical
device drivers. Both the VM and VFS layers submit 1/0 requests to block devices; it is the job ol the
I/O scheduling layer to prioritize and order these requests before they arc given to the block devices.

Any 1/0O scheduling algorithm has to satisfy certain (sometimes conflicting) requirements:

e Hardware access times should be minimized; Le., requests should be ordered according to phys-

2K1

CHAPIER 34. 1I/O SCHEDULING
352

scal location on the disk. This leads to an elevator scheme where reguests are inserted in the

pending queue in physical order.
¢ Requests should be merged to the extent possible to get a big a contighous region as possible,
- which also minimizes disk access time.

¢ Requests should be satisfied with as low a latency as is feasible; indeed in some cases determinism
(in the sense of deadlines) may be important.

o Write operations can usually wait to migrate lrom caches to disk w;iithout slti%hngbp;ocessfs.
i ' 3 i ocess to wait for completion betore -

Read operations, however, almost always require a pr . ‘ -
ceedingpfurther. ,Thus f.avc;ring reads over writes leads to better parallelism and system respon

siveness.

e Processes should share the /O bandwidth in a fair, or at least consciously Prioritized tfasﬁuoii
even it means some overall performance slowdown of the /0O layer, process throughput shou

not suffer inordinately.

Since these demands can be conflicting, different 1/0 schednlers may be app_roplf‘;al.f:b.flc-)r df}f}zrezné

go databasc server vs. a desktop system. In crder to provide flexibi 1‘f.y,. .
various necded functions are

This is done

workloads; e.g., a lar : ! -
Linux kelznel has an object oriented scheme, in which pointers o the

supplied in a data structure, the particular one of which can be selected ab run time.
with:

linux ... elevator=[anticipatory|cfqldeadline|noopl

At least one of the T/O scheduling algorithms must be compiled into the kernel. We'll discuss each

of the following in some detail:

s Anticipatory Scheduling (AS}
¢ Completely Fair Queueing (cfq)
s Deadline Scheduling

e noop (A simple scheme)

. N) i
The delault choice is a compile configuration option; for kernels before 2.6.18 it was was AS, while

it is now CFQ but distributions may have a different preference.

It is possible to use different I/O schedulers for different devices. The choice can be made casily

through the command line, or from within kernel code by calling the {unction

int elevator_init{struct request_queue *q, char *name) ;

. - o 5 4 - Lh
For imstance the generic block layer calls this function with name set equal to RULL so as to get tne

defantt, while the block tape device driver calls it with name set equal lo noop.

34.2. TUNABLES 353

34.2 Tunables

Tiach of the I/O schedulers exposes parameters which can be used to tune behaviour at run time.
The parameters are accessed through the sysfs filesystem.

One can change the scheduler being used for a device:

$ cat /sys/block/sda/queue/scheduler
noop [anticipatory] deadline ciq

$ echo cfq > /sys/block/sda/queue/schednler
$ cat /sys/block/sda/queue/scheduler

noop anticipatory deadline [cfq]

The actual (unables vary according (o the particular I/O scheduler, and can be found under:
/sys/block/<device>/queue/iosched

For example:

$ 1s -1 /sys/block/sda/queue/iosched

total ©

“Iw-r-—r—— 1 root root 4096 Mar 27 17:4% antic_expire
“r—-r--r— I root root 4096 Mar 27 17:42 est_time
“ry-r-—r—— 1 Toot root 4086 Mar 27 17:42 read_batch_expire
“rwer--r— 1 root root 4096 Mar 27 17:42 read ezpire
“Tw-r——r-~ 1 root root 4096 Mar 27 17:42 write_batch_expire
“Tw-r—-r— 1 root root 4096 Mar 27 17:42 write_expire

We'll discuss some of the tunables for the individual I /O schedulers.

34.3 mnoop 1/0 Scheduler

This simple scheduler focuses on disk utilization. For a given device, a single queue is maintained. For
each request it is determined if the request can be merged (front or back) with any existing request.
If not the request is inserted in the queue according to the starting block number.

In order to prevent the request from going stale, an aging algorithim determines how many times an
1/O request may have been bypassed by newer requests, and above a threshold prompts the request
to be satisfied.

"The noop scheduler is particularly useful for non-disk bagsed block devices (such as ram disks), as
well as for advanced specialized hardware that has its own T1/0 scheduling software and caching, such
asg some RAID controllers. By letting the custom hardware /sollware combination make the decisions,
this scheduler may actually outperform the more complex alternatives.

354 CIIAPTER 34. 1/O SCHEDULING

34.4 Deadline I/O Scheduler

The deadline I/0 scheduler aggressively reorders requests with the Simult;a.uleogs gqais of lmptr‘ovmg
o%erali performance and preventing large latencies for individual requests; i.e., limiting starvation.

With each and cvery request the kernel associates a deadline. Read requests get higher priority than
write requests.

Five separate T/O queues are maintained:

o Two sorted lisls are maintained, one for reading and one for writing, and arranged by starting
block.

e Two FIFO lists are maintained, again one for reading and ope for writing. These lists arc
sorted by submission lime.

e A fifth queue contains the requests that are to be shoveled to the device driver itself. This is
called the dispatch queue.

Exactly how the requests are pecled off the firsé four queues and placed on the fifth {dispatch queue)
is where the art of the algorithm is.

Tunables

read_expire:

How long (in milliseconds) a read request is guaranteed to occur within. (Default = HZ/2 = 500)

write_expire:

How long (in milliseconds) a write request is guaranteed to oceur within. (Default =5 * HZ = 5000
)

writes_starved:

How many requests we should give preference to reads over writes, (Default =2)

fifo_batch:
How many requests should be moved from the sorted scheduler list to the dispaich queue, when the
deadlines have expired. (Default = 16}

front_merges:

Back merges are more common than fronl merges as a contiguous requ.est usually _continﬁes tot:;lhe
next block. Setling this parameter to 0 disables front merges and can give a boost if you know they

are unlikely to be needed. {(Default = 1)
Some detailed documentation can be found at: /usr/sre/linux/Documentation/block /deadline-
iosched.txt.

34.5. COMPLETELY FAIR QUEUE SCHEDULER 355

34.5 Completely Fair Queue Scheduler

"The efq (Completely Fair Queue) method has the goal of equal spreading of 1/O bandwidth among
all processes submitting requests.

"Theoretically each process has its own 1/0 queue, which work together with a dispatch queue which
receives the actual requests on the way to the device. In practice the number of quenes is fixed (at
64) and a hash process based on the process 1D is used to select a queue when a request is submitted.

Dequening of requests is done round robin style on all the queues, each one of which works in FIFQ
order. Thus the work is spread out. "o avoid excessive seeking operations, an entire round is selected,
and then sorted into the dispatch queune before actual TI/O requests arc issued to the device.

Tunables

quantum

Maximum queue length in onc round of service. {Default = 4);
quened

Minimum request allocation per queve. (Default = 8)
fifo_expire_sync

FIFO timeout for sync requests. (Default = HZ/2)
fifo_expire_async

FIFO timeout for async requests. (Default = 5 * HZ)
tifo _batch_expire

Rate at which the FIFO’s expire. (Default = HZ/8)
back_seek_max

Maximum backwards scek, in KB. (Default = 16X)
back _seek_penalty

Penalty for a backwards seck. (Default = 2)

34.6 Anticipatory I/0 Scheduler

The anticipatory I/0 scheduler works off the observation that disk reads are often followed by
other disk reads of nearby sectors.

When a request is made, a timer starts and I/O requests are not forwarded to the driver until it

expires; i.e., the request queue is plugged momentarily. In the meantime, if another close request
arrives it ig serviced immediately.

The algorithm is adaptive in that is constantly adjusts its concept of elose in accordance with the
actual I/O request Ioad.

356 CHAPTER 34. 1/O0 SCHEDULING

When there are no more close requests, work continues with normal pending I/O requests.

The basic goal is to reduce the per-thread response time. 'This scheme is similar in implementation
to the deadline scheduler, and can be consider a variation on it.

Tunables

antic_expire:

Maximum time (in milliseconds) Lo wait anticipating a good read (close to the most recently completed
request) before giving up. (Default = HZ/150 = 6)

read_expire:

How long (in milliseconds) until a read request expires, as well as the interval between serving expired
requests. {Default = HZ/8 = 125)

read_batch_expire:

How long (in milliseconds) a bateh of reads gels before pending writes are served. Should be a
multiple of read_expire. The higher the value, the more reading is favored over writing. {Default
— HZ/2 = 500)

write_expire and write batch_expire:
Yerve the same functions for writes. (Defaults = HZ/4 = 250, HZ/8 = 125)
est_time:

Gives some statistics.

Some detailed documentation can be found at: /usr/src /linux/Documentation /block / as-iosched.txt:

34.7 Labs

Lab 1: Comparing I/O schedulers

Write a script {or program if you prefer) that cycles through available 1/0 schedulers on a hard disk
and does a configurable number of parallel Teads and writes of files of a configurable size. You'll
probably want to test reads and writes as separate steps.

To test reads you'll want to make sure you're actually reading from disk and not from cached pages
of memory; you can flush out the cache by doing

$ echo 3 > /proc/sys/vm/drop_caches

before doing the reads. You can caf into / dev/null to avoid writing to disk. To make sure all reads
are complete before you get timing information, yon can issue a wait command under the shell.

To test writes you can simply copy a file (which will be in cached memory after the first read)
multiple times simultaneously. To make sure you wait, for all writes to complete before you get timing
information you can issue a sync call.

Chapter 35

Block Drivers

- We'll introd i :
We'll talk about what bhey roduce block device drivers. We'll consider block buffering,.

i]] o . 1 i . i -VV ,H }. I
Imp t o = J
ortan geﬂd lSk da.t:a ‘;tI llC‘ ure Vb e]_1 dlSCHSS the bl()Ck drl Ver qulleSt 111]1(:!;101; d,nd see h(W

reading and writing block devices is quite different than for character devic
es.

35.1 What are Block Drivers?

55.2 Buffering . .\ o T 357
35.3 Registering a Block Driver 2o
35.4 gendisk Structure, T 200
555 Boeet Hondling . . T 360
356 Lot e : 362

................... 365

35.1 What are Block Drivers?

Drivers {or bl i ;
5 ock devices are similar i
imilar in some wa : .
many and deep. ys to those for character drivers, but differences are

In Iy mal usag() blOCk d i i 1 a eSy’% CIs WI 1 ![a] OW [‘an(l“[[
T A y CVICES Conta-l 1 IOI‘mai;l ed a.Ild mount ble I i] E i

(ﬂOl'fl—Sequent}aD acCess. The de‘v’ice dl‘ivel‘ doeS not depend (4] € ¥ : ’ yc l (3

oo, T th t pe Of ﬁles Stem pllt on th;

any

CHAPTER 35. BLOCK DRIVERS
368

' it its
While a particular system call may request any number oidbjztesl, the lmggfgalrzgiis/’t:gt;EZ?\\;?:C)
’ ; i i hed {unless explhcit. d
t be in multiples of the block size. All access is cac) .
I\irlﬁisch means writf)cs to the device may be delayed, and rcads may be satisfied from cache

T'he drivers do not have their own read/write functions. Instead thcy_deploy'a requ;a;ttfélélcctriggl,o i
calﬁmck function which is invoked by the higher levels of the kernel in a fluid way that dep
the use of the cache.

i it onds
Block devices may have multiple partitions. In mosi, instances the parLzFlon nurlr)lber ;(])lrgesgming
to the d;avice’s minor number, while the whole device ghares the same major mumber.
convention for the nodes is:

Major Name — Unit — Partition

i it ils of th
e.g., /dev/hdb4 has a Major Name of hd, is Unit b (the second), and is Partition 4. Details of the
p‘aréitioning are contained in the gendisk data structure.

Block devices may also employ Temovable media such as CD-ROMS and floppy disks.

35.2 Buffering

in fi i : 1ts, made
i i ich ¢ ized in fixed size blocks, although I/0 requests,
iles reside on block devices which are organize e . 7 ‘ ade
illlteli, ;;::e(;nocalls may be for any number of bytes. Thus block devices must be controlled by
- 7 . N -
buffering/caching systen, which is shared for all devices.

i i block
The blocks are cached through the page cache, and a given page may contain more than one blo
device buffer.

The device itself should only be accessed if:

e A block not presently in cache must be Joaded on a read reguest.

5 ab i th
e A block needs to be written {eventually) if the cache com‘;entb no 101.1gerr11na.tch wh:,{c;l 1; :;E thz
device itself. In this case the block must be marked as dirty. Note if a file is opene
0_SYNC flag, no delay is allowed.

i : all modified blocks that haven’t been
iodic i the pdfiush system process which causes a : : .
ATJ ge;:l)(r)dal.cc:;:z;afrnoun“; of time, to be flushed back to the device. Ot.her event,;;1 m‘a,ty a}s§u r:;ixr':lgugl(;r
E]ie flushing, with the object being to keep the number of dw.t?‘.' bk?cks in the cac ebalu a]:,(m1a i é
?i to ma,k(,a sure that the most important blocks, those describing incdes and superblocks, p
an :)
most consistent.

The sync command writes all modified buffer blocks in the cache. The faync() system call writes
back all modified buffer blocks for a single file.

35.3 Registering a Block Driver

e e . . s
Registering a block device is generally done during the mltmh.zauon r:;;tu(:lie, a,n(;i mllr; ;nf;(t} Xsﬁup
e imi ing it device. Unregistering is generally done v

retty similar to doing it for a character ' ! ing is :
foutze, just as for a character device. The fanctions for doing this are:

The block_device_operations structure plays the saine role the file_o
for character drivers.

35.3. REGISTERING A BLOCK DRIVER 359

#include <linux/fs.h>

int register_blkdev (unsigned int major, const char *name};
int unregister_blkdev (unsigned int major, comst char *name) ;

register_blkdev{() relurns 0 on success and -FBUSY or —-EINVAL on failure. Dynamic assignment is
permitied. The value of major has to be less than or equal to MAX_BLEDEV=255.

unregister_blkdev() returns 0 on success and -EINVAL on failure. It checks that major is valid

and that name matches with major, but doesn’t check if you are the owner of the device you are
unregistering.

Kernol Karel
Version Version
Note

Nats

e There also exist more modern block device registration and unregistration functions,
blk_register_region() and blk_unregi ster_region(),

¢ The use of these is somewhat complicated and can be read about in an article by John
Corbet in his driver porting series: http://lwn.net /Articles/25711/.

perations sbructure plays
H gets associated with the device through an entry in the gendisk data

structure, as we will show shortly.

The block_device_operations structure is defined in /usr/sre/linux/include/ linux/fs.h as:

struct block_device operations {

};

int (*open} {struct inode * i, struct file *f) ;
int (#release} (struct inede #i, struct file *1);

int (#icctl) (struct inode *i, struct file #*f, wnsigned cmd, unsigned long arg);

long (+unlocked_ioctl) (struct file *f, unsigned cmd, unsigned long arg);

long (*compat_ioctl) (struct file *f, unsigned cmd, unsigned long arg);

int (*direct_access) (struct block_device *bdev, sector_t sector, void *+kaddr,
unsigned long *pfm);

int (#media_changed) {struct gendisk *gd);

int (*revalidate_disk) (struct gendisk *gd);

int {*getgeo) (struct block_device *bdev, struct hd_geometry *geo);
struct module *owner;

For simple drivers, one need not cven define open() and release() entry points, as generic ones will

do the basic work. However, real hardware will probably need to perform certain steps at these times
and will still need specific methods to be written.

CHAPTER 35. BLOCK DRIVERS
360

Example:

=1

static struct block_device operations mybdrv_fops
.owner= THIS_MODULE,

.open= mybdrv_open,
.release= mybdrv_release,
LJlectl= mybdrv_ioctl

};

Ketnel Kernel
Verslon Verston
Note Nole

o The 2.6.28 kernel introduces changes to the block_device_operations structure which

is now defined as:

struct block_device_operations { ‘
(xqpen) (struct block_device *bdev, fmode T mode) ;

(#release) (struct gendisk ¥gd, fmode_t mode) ; .
(#1locked_ioctl) (struct block_device #bdev, fmode_t mode,
unsigned cmd, unsigned long arg) ;
(*¥ioctl) (struct block device «hdev, fmode_t mode,
unsigned cmd, unsigned long arg) ;
long (*compat_ioctl) {struct block_device *bdev,
unsigned cmd, unsigned long arg);
int (#direct_access) (struct block_device *bdev,
sector_t sector, void *+kkaddr,
unsigned long *pfn);
int (*media_changed) (struct gendisk *gd) ;
int (*revalidate_disk) (struct gendisk *gd) ; .
int (xgetgeo) (struct block device *bdev, struct

struct module ¥owner;

int
int
int
int

fmode_t mode,

_geometry #geol;

35.4 gendisk Structure

‘The gendisk structure is defined in /usr/s / . - .
tionagble device. You'll have to set it up, manipulate it, and free it when done
The gendisk structure is:
struct gendisk {

int major;
int first_minor;

/* major number of driver */

re/linux/include/linux/ genhd.h and describes a pari-

35.4 GENDISK STRUCTURE 361

int minors; /% maximum number of minors, =1 for
* disks that can’t be partitioned. */
char disk name[32]; /% name of major driver %/

struct hd_struct *¥part; /+ [indexed by minor] %/
int part_uevent_suppress;

struct block_device_operations *fops;

struct reguest_queue *queune;

void #private_data;

sector_t capacity;

int flags;

struct device *driverfs_dev;
struct kobject kobj;

struct kobject *holder dir;
struct kobject #slave_dir;

struct timer_rand state *random;
int policy;

atomic_t sync_io; /* RAID */
unsigned long stamp;
int in_flipht;
#ifdef CONFIG_SMP
struct disk_stats *dkstats;
f#felse
struct disk_stats dkstats;
H#endif
};

major is the major number associated with the device, and first_minor is the first minor number
for the disk.
disk_name is the disk naine without partition mumber; e.g., hdb.

tops points to the block_device_operations structure. Putting it in the gendisk structure is how
il is associated with the device..

request_queue poinls to the queue of pending operations for the disk. Note there is only one request
queue for the entire disk, not one for each partition.

private data points to an object not used by the kernel and thus can be used to hold a data structure
for the device that the driver can use for any purpose.

capacity is the gize of the digk in 512 byte sectors; even if you have a different sector size, the
capacity has to be unitized in this way.

flags control the way the device operates. Possible values include GENHD_FL_REMOVABLE, GENHD_FL_CD
ete. ;

The following functions are used to allocate, configure, and free gendisk data structures:
#include <linux/genhd.h>
struct gendisk *alloc_disk (int minors);

void add_disk (struct gendisk *disk);
void put.disk {struct gendisk #disk);

362 CHAPTER 35. BLOCK DRIVERS

void del_gendisk (struct gendisk *disk);
void set_disk_ro (struct gendisk *disk);

The first step is to create the gendisk data structure. I'his is done with alloc_disk(), whose
argument is the largest number of minor numbers, and thus partitions, the disk can accommodate.

One then fills in the various fields, such as the major number, the first minor (generally 0), and
the capacity (which can be done with the void set_capacity (struct *gendigk, int nsectors)
magcro, and point to the proper request queue and device operations table.

Once any needed initializations are done to the device, the function add_disk() is called to activate
the device. This increases the veference count for the disk; the function put_disk() should be called
when the structure is released to decrement the reference count.

Upon removal of the device, one has to call del_gendisk(), although the actnal removal won't
happen until you subsequently call put_disk().

To put all partitions on the disk in a read-only status, you can use set_disk_ro Q.

35.5 Request Handling

Upper levels of the kernel handle the /O requests associated with the device, and then group them
in an efficient manner and place them on the request queue for the device, which causes them to
get passed (o the driver’s request function.

The kernel maintains a request queue for each major number (by default). The data structure is
of type struct request_queue and is defined in /usr /src/linux/include/ linux/blkdev.h. The
other major data structure involved is of type struct request and details each request being made
to the driver. 'Phe request quene musi be initialized and cleaned up with the functions:

#include <linux/blkdev.h>

struct request_gueue ¥blk_init_queue (request_fn_proc *request, spinlock_t *lock);
void blk_cleanup_queue (struct request_gueue *q);

and the sector size should be set in this structure with
void blk_gueue_hardsect_size(struct request_quene xq, unsigned short size);

A spinlock has to be passed to the upper layers of the kernel. This will be taken out when the request
funckion is called, with code like:

gtatic spinlock_t lock;
spin_leock init (&lock);

ny_request_gueune = blk_init queue {(ny_reguest, klock));

The stmplest way to see how request handling is done is to look at a trivial request function:

35.5. REQUEST HANDILING

static void my_request (struct re
struct request *rq;
int size;
char #*ptr;
printk (KERN_INFQ *® i

quest_queuéﬂ¥Q)

while ((rq = elvmnext_request (g))) {'f
it (!blk_fs_request (xrq)) { x
printk (KEAN_FRFO
"This was not a normal fs ra
end_request (rqg, 0);

quest; skipping
continne; L

PFr = my_dev + rg->sector * q~>hard5eﬁt
slze = rq->current_nr_sectors # g->hard

if ((ptr + size) > (my_dev + disk éize”)'
printk (KERN_ERR " tried to g;
end_request (rg, 0);
continue;

past

}
if (rq data_dir (rq)) { X
printk (KERN_INFO "a write\n"): = ..

memcpy (ptr, rg->buffer, size):
} else { . '

printk (KERN_INFO "a read\n"):
memepy (rq->buffer, ptr, size);

1
end_request (rq, 1):
}

. printk ("KERN_INFU leaving reguest\n"):
;

Peeling off the first request from the queue is doﬁe Wl
Wh_en the.re are no more requests. The function blk. £
being delivered. This evaluates as true for normal ﬁl(:,sy
other kinds of operations. .

The actual copying is done with a simple memcp:y(:) S
rq_data._dir(), which checks the first bit of the flags fi
for writes, and cleared for reads, et

Exiting the request function ends when the end_reéﬁésiﬁ(hingti
of 0 for failure, or 1 for success. (The other argument is a pomier

364

CHAPTER 35. BLOCK DRIVERS

|
Kernel Kernet
Version - Vergion
Note Note

The 2.6.31 kernel introduces changes in the block dTiver iIntercfla(;:;:,. rg{gorl;;nlitizﬁ
st introducing some new functions. In addition the :
request _queue structure and in ¢ e functions
longer appear. ermore
elv_next_request() and end_request{() no : : !
blk_quene h(alrdsect_size() should be replaced with blk_gueue_logical_block_size()

which has the same arguments. .
Here is an example of a reworked request [unction:

static void my_request (struct request_dgueue *q){
struct request *rq;

int size, res=0;

char *ptr;

unsigned nr_sectors, sector; . N
printk (KERN_INFO "entering request routine\n");

rq = blk_fetch_request(q);
while (rq){) ©
i 'blk_fs_request (rq. o ‘
v (p:;n;k (KE§N WARNING "This was not a normal fs request, skipping\n");
goto dome;

¥

nr_sectors = blk_rq_cur_sectors(rq);
sector = blk rg_pos(rg);

ptr = my_dev + sector * sector_size;
size = nr_secktors * sector_size;

i i igk_size)) {

if ((ptr + size) > (my_dev + disk_ . "
piintk (KERN_WARNING " tried to go past end of devicel\n");
goto done;

T
if (rq_data_dir (zq)) { .)
pgintk (KERN_INFO “writing at sector ¥d, Y%ud sectors \n",

sector, nr_sectors);
memcpy (ptr, rg->buffer, size);
} else { '
printk (KERN_INFD "reading at sector %d, %ud sectors \n",
aector, nr_sectors);
memcpy (rg->buffer, ptr, size);
¥
domne:
if (t__blk_end request_cur(rq, res))
rq = blk_fetch_request{q);

¥
printk (KERN_INFO "leaving requestin");

35.6. LABS 366

35.6 Labs

Lab 1: Building a Block Driver

Write a basic block device driver.

You'll need to implement at least the open() and release() entry points, and include a request
function.

You can salely use 254 for the major device number and select a minor device number. Yor an added
excreise try getting a major number dynamically. Assuming you are using udev, the node should be
made automatically when you load the driver; otherwise you wiil have to actually add the node with
the mknod command.

Keep track of the number of times the node is opened. Try permitting multiple opens, or exclusive
use.

Write a program to read {(and/or write) from the node, using the standard Unix I/O hmnctions
(open(), read(), write(), close (). After loading the module with insmod use this program to
access the node.

NOTE: Make sure you have enough memory to handle the ram disk you create; The solution has
128 MB allocated.

Lab 2: Mountable Read/Write Block Driver

Extend the previous exercise in order to put an ext3 file system (or another type) on your device.

You can place a filesystem on the device with

mkfs.ext3 /dev/mybdrv
mount /dev/mybdrv mnt

where you give the appropriate name of the device node and mount point.

For an additional enhancement, Gry partitioning the device with fdisk. Tor this you may need an
additional ioct1 () for HDIO_GETGED, and youw’ll have to include: linux/hdreg.h. This ioctl returns
a pointer to the following structure:

struct hd_geometry {
unsigned char heads;
unsigned char sectors;
unsigned short cylinders;
unsigned long start;

}

Remember the total capacity is (sector size) x (sectors/track) x {cylinders) x (heads). You also want
to use a value of 4 for the starting sector.

366

If you are using a rccent kerael and version of udev,

CHAPTER 35. BLOCK DRIVERS

the partition nodes should be made awtomatically

when you load the driver; otherwise you will have to actually add them manually.

Index

_get_free_page(), 188
__get_free pages(), 188

access_ok{), 196
ACP1, 330

add timer (), 129
AGP, 261
aio_error(), 346
aio_init (), 346
aio_read(), 346
aiowrite(), 346
aioch, 346

APM, 330
asynchronous T/0, 345
atomic variables, 139
atomic functions, 139
atomic operations, 138

big kernel lock (BKL), 143

binary blobs, 14

bit operations, 138

bit functions, 140

block drivers
blk register region(), 359
blk unregister region(), 359

block drivers
blk_cleanup_queue ()}, 362
blk.init queue(), 362
blk_queue hardsect_size(), 362
blk queue_logical block size(), 364
block device_operations, 359
del gendisk(}, 361
elv_next request (}, 363
end_request (), 363
register_blkdev(), 358
unregister_blkdev (), 358

block buffering, 358

block devices, 12

block drivers, 357
add disk{(), 361
gendisk, 360
major and minor numbers, 361

partitions, 358
put_disk(), 361
registering, 358
request function, 358, 362
request quene, 361, 362

bootmem, 189

BUG(, 114

BUGON(), 114

buses, 240

callback functions, 16
character drivers
file operations, 44
regisiration/de-registration, 41
character devices, 12
character drivers, 36
access, 40
cdev_alloc(), 41
cdev_del (), 41
cdev, 41
dynamical allocation, 39
entry poiuts, 40, 45, 46
file, 49
inode, 50
major and minor numbers, 36
reserving major and minor numbers, 38
system calls, 40
usage count, 51
checkpatch.pl, 79
completion functions, 139, 148
container_of (), 174, 232
converting time values, 126
copy.from user (), 196
copy-touger (), 196
crash, 117
current, 70, 200

debugfs, 118
DECLARE_MUTEX (), 146
DECLARE RWSEM(), 146
deferrable functions, 227
deferred tasks, 16

67

368

DEFINE MUTEX(), 144
del_timer(}, 129
del.timer_sync(), 129
delays, 128
device, 172
device nodes, 36
device management, 68
device nodes, 42
device driver, 173
device register(), 173
device unegister{), 173
DMA, 264
addresses, 266
coherent mappings, 266
DMA pools, 268, 269
dma alloc_coherent (), 266
dma_free_coherent (}, 266
dma map_sg(), 270
dma map_single(), 267
dma_supported(}, 266
dma unmap_sg(}, 271
dma_unmap_single (), 267
interrupts, 264
ISA bus, 271

memory buffer requirements, 265

PCI bus, 266

scabter-gather mappings, 268, 269

scatterlist, 270
sg_dma_address(), 271
sg set_page(), 270
streaming mappings, 267
transfers, asynchronous, 269
transfers, synchronous, 264
DMA memory, 185
dmesg, 20
do_gettimeofday (}, 128
down (), 145
down_interruptible(), 145
down_read(), 145
down_trylock(), 145
down write(), 145
driver.register(), 173
driver unegister(}, 173
dynamic timers, 129, 130

eniry points, 16
error nombers, 18

file access, 209
filesystems, 68
find task by.vpid(}, 70

find vpid(), 70

firmware, 15, 179

for_each_pei(), 259

free page(}, 188

free pages(), 188

[requency scaling, 339
conservative, 340
drivers, 342
governors, 343
mechanism, 340
notifiers, 336
ondemand, 340
performance, 340
policy, 340
policy notifier, 341
powersave, 340
transition notifier, 341
userspace, 340

gdb, 116

get device(), 173

get driver(), 174
get.user(), 196
get_user_pages (), 200, 266
GFP_ATOMIC, 187

GFP_DMA, 187

GFP_KERNEL, 187

gfp-mask, 186

HAL, 43

haldaemon, 43

high memory, 185

high resolution timers, 132
hotplug, 33, 43, 336

HZ, 126

[/O ports
remapping, 246
1/0 ports, 240
allocating, 246
reading and writing, 246

reading and writing, 244, 247

registering, 241, 242
slowing, 245

I/O Scheduling, 351
Anticipatory, 352, 355

INDEX

Completely Fair Queueing, 352, 355

Deadline, 352, 354

noop, 352, 353

tunables, 353
ifconfig, 277, 279, 298

INDEX

in interrupt (), 187
init MUTEX (), 146
init MUTEX_LOCKED (), 146
init_timer(), 129
initramfs, 43, 60
initrd, 43, 60
interrupts, 16, 90, 225
aborts, 01
affinity, 94
APIC, 92
asynchronous, 90
battom halves, 226
DMA, 264
edge-trigpered, 94
enabling and disabling, 95
exceptions, 90
faults, 90
free_irq(), 99
handlers, 90, 98, 99
IRQ, 92
irg.desc, 96
irgaction, 98
level-trigpered, 93
maskable, 92
MSI, 94
MSI-X, 94
nonmaskable, 92

programmed exceptions, 91

request_irq(), 99
sharing, 90
synchronize irq(), 99
synchronous, 90
threaded, 235
top halves, 226
traps, 91
user space handlers, 221
io_getevents (), 348
io prep read(), 349
io_prepwrite(), 349
io_setup(), 348
io_submit (), 348
ioch, 348
ioctl(}, 153
defining commands, 156
directional translers, 158
entry point, 154
lockless, 155
type macros, 157

Jiffies, 125
jiffies_64, 126

jprobe_return(), 121
jprobes, 121

kcore, 116

kdb, 117

kernel
browsers, 56
CFS scheduler, 71
compiling, 57
components, 67
configuration, 56, 57

configuration file exiraction, 56

cscope browser, 56
execution modes, 69
global browser, 56
interrupt context, 71
kernel mode, 69, 71
Ixr browser, 56
O(1) scheduler, 71
obtaining source, 57
obtaining source, 53
preemption, 70
process context, 71
scheduling, 70
scheduling modules, 71
source layout, 53
source line count, 55
user mode, 69, 71
kernel address, 196
kernel concurrency, pseudo, 138
kernel concurrency, frue, 138
kernel debuggers, 116
kernel style, 76

kernel synchronization methods, 138

kernel threads, 227
kernel-doc, 77
kernel-space, 196
kerneloops, 114

kiree(), 186

kgdb, 117

kio, 198, 199

klogd, 20

kmalloc(), 186

kmap (), 201

kmem cache alloc(), 192
kmem cache.create(), 190
kmem_cache destroy(), 190
Imem cache free(), 192
kmem.cache_shrink(), 190
kobjects, 172

kprobes, 119

369

370

krealloc(), 187
kmap (), 201
kzalloc{), 187

lesswatts, 330

libaio, 348

1likely(}, 80

linked lists, 81
1ist_head, 82

loading and unloading, 16
lock kernel (), 143

low memory, 185

1spci, 254

memory allocation, 186
memory barriers, 240, 244
memory caches, 190
memory management, 68, 184
memory mapping, 196, 198, 200-202, 204
mernory zounes, 185
mkinitrd, 60
mknod, 36
mod_timer (), 129
MODULE_DEVICE TABLE(}, 257, 316
MODULE_FTRMWARE(), 180
modules, 23
__exit, 24, 107
_init, 24, 107
_initdata, 107
aliases, 106
cleanup module(}, 25
compiling, 28, 109
demand loading, 106
depmod, 26, 29, 106
dynamic loading, 106
EXPORT_SYMBOL(}, 104
EXPORT_SYMBOL_GPL (), 104
exporting, 104
freeing unused memory, 107
init module(), 25
insmod, 28, 106
Kconfig, 109
license, 104
1smod, 26
makefiles, 29, 109
modinfo, 28
modprobe, 27, 28, 34, 106
modprobe. conf, 25
module utilities, 25
MODULE_AUTHOR.(), 104
MODULE DESCRIPTION (), 104

MODULE_DEVICE_TABLE(), 33
module_exit (), 24, 107
module_init(), 24, 107
MODULE.LICENSE, 24
MODULE_LICENSE(), 104
module_param(}, 27
parameters, 27

request module (), 106
rmmod, 26

tainted, 24, 105

msleep(), 128
msleep interruptible(), 128

MTD, 321

cramfs, 325

filesystems, 324

initrd, 324

jfs, 325

iffs2, 325

NAND, 322

NOR, 322

ramfs, 325

raw block modules, 324

raw character modules, 324
mutex. init (), 144
mutex_islocked(}, 145
mutex lock(), 144
mutex_lock_interruptible(), 144
mutex_Lock() killable, 144
mutex trylock(), 145
mutex unlock(), 144
mutexes, 139, 144, 147

ndiswrapper, 15

network drivers
net_device_ops, 278

network drivers
alloc_etherdev(), 277
alloc. netdev(), 277
closing, 278
ether_setup(}, 277
free netdev(), 277
net_device, 277, 281
net_device_ops, 287
netdev_priv(), 277
netif_carrier off{), 303
netif _carrier ok(}, 303
netif carrier on(), 303
netif. start_queue(), 279
netif_stop_queue (), 279
netif _wake_quene(), 279
polling, 304

INDIEX

reception, 276
network devices, 12
network drivers, 276
carrier state, 303
ethiool, 306
ioctl(), 303
loading and unloading, 277
MIT, 306
multicasting, 302
NAPFI, 304
netif rx(), 297
opening, 278
polling, 304
receplion, 297
socket bulfer functions, 290
socket buffer structures, 289
statistics, 207
TOE, 305
transmission, 276, 295
transmission disabling, 296
transmission timeouts, 296
TS8O, 305
network layers, 273
network packets, 275
networking, 69
notifiers, 335
atomic, 336, 337
atomic_netifier head, 336
blocking, 336, 337
blocking notifier_head, 336
callback functions, 337
creating, 337
notifier block, 336
notifier call(), 336
raw, 336
SCRU, 336
nvidia, 15

0_DIRECT, 199
objdump, 115
0Ops messages, 113

PAE, 186

page faults, 186, 197
page frame number, 186
page frame nambers, 205
page tables, 186
page_address (), 201
PAGE_OFFSET, 184

pages, 186

panic(), 114

371

patches, 78
PCI, 253
BIOS, 255
configuration register, 254, 258
configuration registers, 259
device detection, 255
1/0 resources, 260
registering drivers, 256
PClI express, 94, 261
pcidev, 174, 258
PCI_DEVICE(), 33, 257
pci_device_id, 257
pcidriver, 174, 256
pci get device(), 258
pciname(), 259
pel register driver(), 174
pci.regsiter driver(), 256
pciunregister.driver (), 174
peimregsiter driver (), 256
pid, 70
pid_task(}, 70
polling, 220
power management, 16, 329
power management functions, 332
power states, 331
printk(), 19
priority inversion, 228
proc filesystem
seqfile interface, 165
proc filegystem, 161
creating entries, 162
reading from, 163
writing to, 164
proc_dir_entry, 162
put_device(), 173
put_driver(}, 174
put_user(), 196

raw I/0, 196

RCU, 139

read_lock irqrestore(), 142
read lock irgsave(), 142
reference counting, 149
register_jprobe(), 121
register kprobe(), 120
register_ netdev(}, 277
relay channels, 207, 208
release firmware(), 180
remap pfn_range, 205
request_firmware(), 180
rv_lock init (), 142

372

schedule (), T0

SCSI devices, 13
sema_init(}, 146
semaphores, 96, 139, 145
seglocks, 139

setpci, 260

SLAB, 192

glab allocator, 190
sleeping, 96, 128, 213, 214, 216
sleeping, exclusive, 218
SLUB, 192

socket buffers, 275

sockels, 275

softirgs, 129, 227

sparse, 79

spin is locked(), 142
spin_lock(), 141

spin lock_init (), 141
spin_lock. irgsave(}, 141
gpin lock restore(), 141
spin trylock(}, 142
spin unlock(), 141

spin unlock wait (), 142
spinlocks, 95, 138, 141
strace, 72

sync, 358

sysfs, 118, 171, 175, 255
syslogd, 20

gystemn calls, 69

gystem tap, 122

tainting, 15, 179
TASK_INTFRRUPTIBLE, 214
TASK_KILLABLE, 214

TASK RUNNING, 214
task_struct, 70, 72, 214
TASK_UNINTERRUPTIBLE, 214
tasklets, 226-228

tgid, 70

time stamp counter (I'SC), 127
timer list, 129
to_pci.dev(), 174

udev, 42, 60, 107
udev.conf, 43

unified device model, 171
mlikely (), 80

unlock kernel(), 143
unregister.jprobe(}, 121
unregister kprobe(), 120
unregister netdev(), 277

INDEX

up(), 145

up.read(}, 145

up_write(), 145

TUSB, 310
bulk transfers, 314
configurations, 311
controllers, 311
descriptors, 311
device classes, 312
EHCIL, 311
endpoints, 312
interrupt transfers, 314
isochronous transfers, 314
OHC], 311
registering devices, 314
speed, 310
topology, 310
transfer types, 313
UHCH, 311
usb_deregister (), 314
USB_DEVICE(), 316
nusb_device_id, 315
usb_driver, 314
usb_register(}, 314

USB devices, 13

user address, 196

user-space, 196

user-space drivers, 14

viree(), 189
virtual address, 184
virtual memory, 184
virtualization, 69
vm_area. struct, 204
vmalloc()}, 189

wait quenes, 213

wait.event (), 214

wait_event interruptible(), 214
wait_event killable(), 214
wait_queue_head t, 214

wake up(), 214
wake_up_interruptible(), 214
waking up, 214, 218

work queues, 227

work quenes, 227, 231
write lock irqrestore(), 142
write lock irgsave(), 142

